激光与光电子学进展, 2020, 57 (21): 211402, 网络出版: 2020-10-27   

选区激光熔化对GCr15高碳钢成形性能的研究 下载: 750次

Study on Effect of Selective Laser Melting on Formability of GCr15 High Carbon Steel
作者单位
1 西安建筑科技大学冶金工程学院, 陕西 西安 710055
2 西安理工大学材料科学与工程学院, 陕西 西安710048
引用该论文

刘世锋, 李云哲, 张智昶, 张光曦, 杨鑫, 王岩. 选区激光熔化对GCr15高碳钢成形性能的研究[J]. 激光与光电子学进展, 2020, 57(21): 211402.

Liu Shifeng, Li Yunzhe, Zhang Zhichang, Zhang Guangxi, Yang Xin, Wang Yan. Study on Effect of Selective Laser Melting on Formability of GCr15 High Carbon Steel[J]. Laser & Optoelectronics Progress, 2020, 57(21): 211402.

参考文献

[1] 刘雅政, 周乐育, 张朝磊, 等. 重大装备用高品质轴承用钢的发展及其质量控制[J]. 钢铁, 2013, 48(8): 1-8.

    Liu Y Z, Zhou L Y, Zhang C L, et al. Development and quality control of bearing steel for heavy equipment[J]. Iron & Steel, 2013, 48(8): 1-8.

[2] 杨永强, 王迪, 吴伟辉. 金属零件选区激光熔化直接成型技术研究进展[J]. 中国激光, 2011, 38(6): 0601007.

    Yang Y Q, Wang D, Wu W H. Research progress of direct manufacturing of metal parts by selective laser melting[J]. Chinese Journal of Lasers, 2011, 38(6): 0601007.

[3] 杨永强, 陈杰, 宋长辉, 等. 金属零件激光选区熔化技术的现状及进展[J]. 激光与光电子学进展, 2018, 55(1): 011401.

    Yang Y Q, Chen J, Song C H, et al. Current status and progress on technology of selective laser melting of metal parts[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011401.

[4] Li B, Qian B, Xu Y, et al. Additive manufacturing of ultrafine-grained austenitic stainless steel matrix composite via vanadium carbide reinforcement addition and selective laser melting: formation mechanism and strengthening effect[J]. Materials Science and Engineering: A, 2019, 745: 495-508.

[5] Cacace S, Demir A G, Semeraro Q. Densification mechanism for different types of stainless steel powders in selective laser melting[J]. Procedia CIRP, 2017, 62: 475-480.

[6] Krell J, Röttger A, Geenen K, et al. General investigations on processing tool steel X40CrMoV5-1 with selective laser melting[J]. Journal of Materials Processing Technology, 2018, 255: 679-688.

[7] Yan J J, Zheng D L, Li H X, et al. Selective laser melting of H13: microstructure and residual stress[J]. Journal of Materials Science, 2017, 52(20): 12476-12485.

[8] 宗学文, 高倩, 周宏志, 等. 体激光能量密度对选区激光熔化316L不锈钢各向异性的影响[J]. 中国激光, 2019, 46(5): 0502003.

    Zong X W, Gao Q, Zhou H Z, et al. Effects of bulk laser energy density on anisotropy of selective laser sintered 316L stainless steel[J]. Chinese Journal of Lasers, 2019, 46(5): 0502003.

[9] 陈洪宇, 顾冬冬, 顾荣海, 等. 5CrNi4Mo模具钢选区激光熔化增材制造组织演变及力学性能研究[J]. 中国激光, 2016, 43(2): 0203003.

    Chen H Y, Gu D D, Gu R H, et al. Microstructure evolution and mechanical properties of 5CrNi4Mo die steel parts by selective laser melting additive manufacturing[J]. Chinese Journal of Lasers, 2016, 43(2): 0203003.

[10] Krell J, Röttger A, Geenen K, et al. General investigations on processing tool steel X40CrMoV5-1 with selective laser melting[J]. Journal of Materials Processing Technology, 2018, 255: 679-688.

[11] Sander J, Hufenbach J, Giebeler L, et al. Microstructure and properties of FeCrMoVC tool steel produced by selective laser melting[J]. Materials & Design, 2016, 89: 335-341.

[12] Yamanoglu R, German R M, Karagoz S, et al. Microstructural investigation of as cast and PREP atomised Ti-6Al-4V alloy[J]. Powder Metallurgy, 2011, 54(5): 604-607.

[13] Olatunde Olakanmi E, Dalgarno K W, Cochrane R F. Laser sintering of blended Al-Si powders[J]. Rapid Prototyping Journal, 2012, 18(2): 109-119.

[14] TakamichiI, Roderick I L G. The physical properties of liquid metals[M]. 1st ed. Oxford: Clarendon Press, 1993.

[15] Brice C A, Dennis N. Cooling rate determination in additively manufactured aluminum alloy 2219[J]. Metallurgical and Materials Transactions A, 2015, 46(5): 2304-2308.

[16] Li Y L, Gu D D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder[J]. Materials & Design, 2014, 63: 856-867.

[17] 陈帅, 陶凤和, 贾长治. 选区激光熔化成形4Cr5MoSiV1钢回火处理后显微组织和力学性能[J]. 中国激光, 2019, 46(10): 1002005.

    Chen S, Tao F H, Jia C Z. Microstructure and mechanical properties of 4Cr5MoSiV1 steel fabricated via selective laser melting post tempering[J]. Chinese Journal of Lasers, 2019, 46(10): 1002005.

[18] Holzweissig M J, Taube A, Brenne F, et al. Microstructural characterization and mechanical performance of hot work tool steel processed by selective laser melting[J]. Metallurgical and Materials Transactions B, 2015, 46(2): 545-549.

刘世锋, 李云哲, 张智昶, 张光曦, 杨鑫, 王岩. 选区激光熔化对GCr15高碳钢成形性能的研究[J]. 激光与光电子学进展, 2020, 57(21): 211402. Liu Shifeng, Li Yunzhe, Zhang Zhichang, Zhang Guangxi, Yang Xin, Wang Yan. Study on Effect of Selective Laser Melting on Formability of GCr15 High Carbon Steel[J]. Laser & Optoelectronics Progress, 2020, 57(21): 211402.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!