中国激光, 2021, 48 (3): 0312002, 网络出版: 2021-02-02   

原子介质中的近共振增益光栅 下载: 775次封面文章

Nearly-Resonant Gain Grating in Atomic Media
作者单位
1 山西大学物理电子工程学院, 山西 太原 030006
2 山西大学极端光学协同创新中心, 山西 太原 030006
引用该论文

董雅宾, 庞嘉璐, 杨丽, 刘瑶瑶. 原子介质中的近共振增益光栅[J]. 中国激光, 2021, 48(3): 0312002.

Yabin Dong, Jialu Pang, Li Yang, Yaoyao Liu. Nearly-Resonant Gain Grating in Atomic Media[J]. Chinese Journal of Lasers, 2021, 48(3): 0312002.

参考文献

[1] Boller K J. Imamo ɡ̬lu A, Harris S E. Observation of electromagnetically induced transparency[J]. Physical Review Letters, 1991, 66(20): 2593-2596.

[2] Harris S E. Lasers without inversion: interference of lifetime-broadened resonances[J]. Physical Review Letters, 1989, 62(9): 1033-1036.

[3] 樊锡君, 张郡亮, 李萍, 等. 开放的ladder型三能级无粒子数反转激光系统[J]. 中国激光, 2002, 29(4): 327-331.

    Fan X J, Zhang J L, Li P, et al. Open ladder-type three level noninversion lasing system[J]. Chinese Journal of Lasers, 2002, 29(4): 327-331.

[4] Ling H Y. Theoretical investigation of phenomena in the closed Raman-driven four-level symmetrical model[J]. Physical Review A, 1994, 49(4): 2827-2838.

[5] Kang H, Zhu Y F. Observation of large Kerr nonlinearity at low light intensities[J]. Physical Review Letters, 2003, 91(9): 093601.

[6] Li J H, Yang W X, Peng J C. Continuous-wave four-wave mixing with linear growth based on electromagnetically dual induced transparency[J]. Chinese Optics Letters, 2004, 2(7): 418-420.

[7] Firstenberg O, Adams C S, Hofferberth S. Nonlinear quantum optics mediated by Rydberg interactions[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49(15): 152003.

[8] Dong Y B, Wang H H, Gao J R, et al. Quantum coherence effects in quasi-degenerate two-level atomic systems[J]. Physical Review A, 2006, 74(6): 063810.

[9] Dong Y B, Zhang J X, Wang H H, et al. Observation of the widening and shifting of EIT windows in a quasi-degenerate two-level atomic system[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39(17): 3447-3455.

[10] Bajcsy M, Zibrov A S, Lukin M D. Stationary pulses of light in an atomic medium[J]. Nature, 2003, 426(6967): 638-641.

[11] Heinze G, Hubrich C, Halfmann T. Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute[J]. Physical Review Letters, 2013, 111(3): 033601.

[12] Baur S, Tiarks D, Rempe G, et al. Single-photon switch based on rydberg blockade[J]. Physical Review Letters, 2014, 112(7): 073901.

[13] Murray C R, Gorshkov A V, Pohl T. Many-body decoherence dynamics and optimized operation of a single-photon switch[J]. New Journal of Physics, 2016, 18(9): 092001.

[14] Ling H Y, Li Y Q, Xiao M. Electromagnetically induced grating: homogeneously broadened medium[J]. Physical Review A, 1998, 57(2): 1338-1344.

[15] Xiao Z H, Shin S G, Kim K. An electromagnetically induced grating by microwave modulation[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43(16): 161004.

[16] Bozorgzadeh F, Sahrai M, Khoshsima H. Controlling the electromagnetically induced grating via spontaneously generated coherence[J]. The European Physical Journal D, 2016, 70(9): 191.

[17] 董雅宾, 周志英, 李俊燕, 等. 室温原子系统中的电磁感应光栅效应[J]. 中国激光, 2017, 44(9): 0912002.

    Dong Y B, Zhou Z Y, Li J Y, et al. Electromagnetically induced grating effect in room-temperature atomic system[J]. Chinese Journal of Lasers, 2017, 44(9): 0912002.

[18] Dong Y B, Li J Y, Zhou Z Y. Electromagnetically induced grating in a thermal N-type four-level atomic system[J]. Chinese Physics B, 2017, 26(1): 014202.

[19] Tabosa J W R, Lezama A, Cardoso G C. Transient Bragg diffraction by a transferred population grating: application for cold atoms velocimetry[J]. Optics Communications, 1999, 165(1/2/3): 59-64.

[20] Brown A W, Xiao M. Frequency detuning and power dependence of reflection from an electromagnetically induced absorption grating[J]. Journal of Modern Optics, 2005, 52(16): 2365-2371.

[21] Brown A W, Xiao M. All-optical switching and routing based on an electromagnetically induced absorption grating[J]. Optics Letters, 2005, 30(7): 699-701.

[22] Sheng J T, Yang X H, Khadka U, et al. All-optical switching in an N-type four-level atom-cavity system[J]. Optics Express, 2011, 19(18): 17059.

[23] Dawes A M C. All-optical switching in rubidium vapor[J]. Science, 2005, 308(5722): 672-674.

[24] Artoni M. La Rocca G C. Optically tunable photonic stop bands in homogeneous absorbing media[J]. Physical Review Letters, 2006, 96(7): 073905.

[25] Hansen K R, Mølmer K. Trapping of light pulses in ensembles of stationary Λ atoms[J]. Physical Review A, 2007, 75(5): 053802.

[26] de Guise H, Tan S H, Poulin I P, et al. Coincidence landscapes for three-channel linear optical networks[J]. Physical Review A, 2014, 89(6): 063819.

[27] . Electromagnetically induced phase grating[J]. Optics Letters, 2010, 35(7): 977-979.

[28] Sahrai M, Bozorgzadeh F, Khoshsima H. Phase control of electromagnetically induced grating in a four-level atomic system[J]. Optical and Quantum Electronics, 2016, 48(9): 438.

[29] Sadighi-Bonabi R, Naseri T. Theoretical investigation of electromagnetically induced phase grating in RF-driven cascade-type atomic systems[J]. Applied Optics, 2015, 54(11): 3484-3490.

[30] Goodman JW. Introduction to Fourier optics[M]. New York: McGraw-Hill, 1968.

[31] 李淳飞, 臧志刚. 用非线性光纤连接的长周期光栅对的光开关特性[J]. 中国激光, 2008, 35(12): 1919-1923.

    Li C F, Zang Z G. Optical switching in a nonlinear-fiber connected long-period fiber grating pair[J]. Chinese Journal of Lasers, 2008, 35(12): 1919-1923.

董雅宾, 庞嘉璐, 杨丽, 刘瑶瑶. 原子介质中的近共振增益光栅[J]. 中国激光, 2021, 48(3): 0312002. Yabin Dong, Jialu Pang, Li Yang, Yaoyao Liu. Nearly-Resonant Gain Grating in Atomic Media[J]. Chinese Journal of Lasers, 2021, 48(3): 0312002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!