Photonics Research, 2019, 7 (7): 07000754, Published Online: Jun. 21, 2019  

Reconfigurable generation of optical vortices based on forward stimulated intermodal Brillouin scattering in subwavelength-hole photonic waveguides Download: 570次

Author Affiliations
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
Copy Citation Text

Dae Seok Han, Myeong Soo Kang. Reconfigurable generation of optical vortices based on forward stimulated intermodal Brillouin scattering in subwavelength-hole photonic waveguides[J]. Photonics Research, 2019, 7(7): 07000754.

References

[1] K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, T. Omatsu. Using optical vortex to control the chirality of twisted metal nanostructures. Nano Lett., 2012, 12: 3645-3649.

[2] M. R. Dennis, R. P. King, B. Jack, K. O’Holleran, M. J. Padgett. Isolated optical vortex knots. Nat. Phys., 2010, 6: 118-121.

[3] G. Foo, D. M. Palacios, G. A. Swartzlander. Optical vortex coronagraph. Opt. Lett., 2005, 30: 3308-3310.

[4] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 1994, 19: 780-782.

[5] H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett., 1995, 75: 826-829.

[6] M. Mirhosseini, O. S. Magaña-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. J. Lavery, M. J. Padgett, D. J. Gauthier, R. W. Boyd. High-dimensional quantum cryptography with twisted light. New J. Phys., 2015, 17: 033033.

[7] N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340: 1545-1548.

[8] M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, J. P. Woerdman. Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun., 1994, 112: 321-327.

[9] L. Marrucci, C. Manzo, D. Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett., 2006, 96: 163905.

[10] H. Xu, L. Yang. Conversion of orbital angular momentum of light in chiral fiber gratings. Opt. Lett., 2013, 38: 1978-1980.

[11] C. N. Alexeyev, M. A. Yavorsky. Generation and conversion of optical vortices in long-period helical core optical fibers. Phys. Rev. A, 2008, 78: 043828.

[12] A. W. Lohmann, D. P. Paris. Binary Fraunhofer holograms, generated by computer. Appl. Opt., 1967, 6: 1739-1748.

[13] K. Dholakia, N. B. Simpson, M. J. Padgett, L. Allen. Second-harmonic generation and the orbital angular momentum of light. Phys. Rev. A, 1996, 54: R3742-R3745.

[14] W. Jiang, Q. F. Chen, Y. S. Zhang, G. C. Guo. Computation of topological charges of optical vortices via nondegenerate four-wave mixing. Phys. Rev. A, 2006, 74: 043811.

[15] J. Arlt, K. Dholakia, L. Allen, M. J. Padgett. Parametric down-conversion for light beams possessing orbital angular momentum. Phys. Rev. A, 1999, 59: 3950-3952.

[16] Y. Zhang, Z. Nie, Y. Zhao, C. Li, R. Wang, J. Si, M. Xiao. Modulated vortex solitons of four-wave mixing. Opt. Express, 2010, 18: 10963-10972.

[17] Z. Zhang, D. Ma, Y. Zhang, M. Cao, Z. Xu, Y. Zhang. Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap. Opt. Lett., 2017, 42: 1059-1062.

[18] D. Zhang, X. Liu, L. Yang, X. Li, Z. Zhang, Y. Zhang. Modulated vortex six-wave mixing. Opt. Lett., 2017, 42: 3097-3100.

[19] Z. Wang, J. Yang, Y. Sun, Y. Zhang. Interference patterns of vortex beams based on photonic band gap structure. Opt. Lett., 2018, 43: 4354-4357.

[20] M. S. Kang, A. Nazarkin, A. Brenn, P. St.J. Russell. Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators. Nat. Phys., 2009, 5: 276-280.

[21] H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, P. T. Rakich. Control of coherent information via on-chip photonic-phononic emitter-receivers. Nat. Commun., 2015, 6: 6427.

[22] E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, P. T. Rakich. Non-reciprocal interband Brillouin modulation. Nat. Photonics, 2018, 12: 613-619.

[23] W. Gao, C. Mu, H. Li, Y. Yang, Z. Zhu. Parametric amplification of orbital angular momentum beams based on light-acoustic interaction. Appl. Phys. Lett., 2015, 107: 041119.

[24] M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, W. D. Phillips. Quantized rotation of atoms from photons with orbital angular momentum. Phys. Rev. Lett., 2006, 97: 170406.

[25] J. T. Mendonça, B. Thidé, H. Then. Stimulated Raman and Brillouin backscattering of collimated beams carrying orbital angular momentum. Phys. Rev. Lett., 2009, 102: 185005.

[26] P. Z. Dashti, F. Alhassen, H. P. Lee. Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber. Phys. Rev. Lett., 2006, 96: 043604.

[27] K. Y. Song, W. Zou, Z. He, K. Hotate. All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber. Opt. Lett., 2008, 33: 926-929.

[28] E. A. Kittlaus, N. T. Otterstrom, P. T. Rakich. On-chip inter-modal Brillouin scattering. Nat. Commun., 2017, 8: 15819.

[29] J. Petersen, J. Volz, A. Rauschenbeutel. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science, 2014, 346: 67-71.

[30] K. Y. Bliokh, D. Smirnova, F. Nori. Quantum spin Hall effect of light. Science, 2015, 348: 1448-1451.

[31] Y. Yue, L. Zhang, Y. Yan, N. Ahmed, J.-Y. Yang, H. Huang, Y. Ren, S. Dolinar, M. Tur, A. E. Willner. Octave-spanning supercontinuum generation of vortices in an As2S3 ring photonic crystal fiber. Opt. Lett., 2012, 37: 1889-1891.

[32] G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, H. L. Fragnito. Field enhancement within an optical fibre with a subwavelength air core. Nat. Photonics, 2007, 1: 115-118.

[33] OkamotoK., Fundamentals of Optical Waveguides (Academic, 2006).

[34] R. A. Waldron. Some problems in the theory of guided microsonic waves. IEEE Trans. Microwave Theory Tech., 1969, 17: 893-904.

[35] T. F. S. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, B. J. Eggleton. Phase-locking and pulse generation in multi-frequency Brillouin oscillator via four wave mixing. Sci. Rep., 2014, 4: 5032.

[36] H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, P. T. Rakich. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Nat. Commun., 2013, 4: 1944.

[37] R. Van Laer, B. Kuyken, D. Van Thourhout, R. Baets. Interaction between light and highly confined hypersound in a silicon photonic nanowire. Nat. Photonics, 2015, 9: 199-203.

[38] C. Wolff, M. J. Steel, B. J. Eggleton, C. G. Poulton. Stimulated Brillouin scattering in integrated photonic waveguides: forces, scattering mechanisms, and coupled-mode analysis. Phys. Rev. A, 2015, 92: 013836.

[39] P. T. Rakich, C. Reinke, R. Camacho, P. Davids, Z. Wang. Giant enhancement of stimulated Brillouin scattering in the subwavelength limit. Phys. Rev. X, 2012, 2: 011008.

[40] S. Afshar, T. M. Monro. A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity. Opt. Express, 2009, 17: 2298-2318.

[41] X. Huang, S. Fan. Complete all-optical silica fiber isolator via stimulated Brillouin scattering. J. Lightwave Technol., 2011, 29: 2267-2275.

[42] S. Ramachandran, P. Kristensen, M. F. Yan. Generation and propagation of radially polarized beams in optical fibers. Opt. Lett., 2009, 34: 2525-2527.

[43] H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, W. Zhang. A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission. Opt. Commun., 2017, 397: 59-66.

[44] R. M. Shelby, M. D. Levenson, P. W. Bayer. Guided acoustic-wave Brillouin scattering. Phys. Rev. B, 1985, 31: 5244-5252.

[45] O. Florez, P. F. Jarschel, Y. A. V. Espinel, C. M. B. Cordeiro, T. P. Mayer Alegre, G. S. Wiederhecker, P. Dainese. Brillouin scattering self-cancellation. Nat. Commun., 2016, 7: 11759.

[46] D. S. Han, I.-M. Lee, K. H. Park, M. S. Kang. Extremely polarization-sensitive surface acoustic wave Brillouin scattering in subwavelength waveguides. Appl. Phys. Lett., 2018, 113: 121108.

[47] D. S. Han, I.-M. Lee, K. H. Park, M. S. Kang. Polarization-selective control of nonlinear optomechanical interactions in subwavelength elliptical waveguides. Opt. Express, 2019, 27: 1718-1726.

[48] L. B. Soldano, E. C. M. Pennings. Optical multi-mode interference devices based on self-imaging: principles and applications. J. Lightwave Technol., 1995, 13: 615-627.

[49] J. D. Love, N. Riesen. Single-, few-, and multimode Y-junctions. J. Lightwave Technol., 2012, 30: 304-309.

[50] R. Ismaeel, T. Lee, B. Oduro, Y. Jung, G. Brambilla. All-fiber fused directional coupler for highly efficient spatial mode conversion. Opt. Express, 2014, 22: 11610-11619.

[51] L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, M. Lipson. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun., 2014, 5: 3069.

[52] M. Bache, H. Nielsen, J. Lægsgaard, O. Bang. Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch. Opt. Lett., 2006, 31: 1612-1614.

[53] D. C. Brown, H. J. Hoffman. Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers. IEEE J. Sel. Top. Quantum Electron., 2001, 37: 207-217.

[54] L. Zhang, P. L. Marston. Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects. Phys. Rev. E, 2011, 84: 065601.

[55] R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, S. Gröblacher. Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature, 2016, 530: 313-316.

Dae Seok Han, Myeong Soo Kang. Reconfigurable generation of optical vortices based on forward stimulated intermodal Brillouin scattering in subwavelength-hole photonic waveguides[J]. Photonics Research, 2019, 7(7): 07000754.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!