Chinese Optics Letters, 2021, 19 (4): 041102, Published Online: Jan. 11, 2021   

Feedback ghost imaging by gradually distinguishing and concentrating onto the edge area Download: 588次

Author Affiliations
1 Department of Physics, College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
2 Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha 410073, China
Copy Citation Text

Junhao Gu, Shuai Sun, Yaokun Xu, Huizu Lin, Weitao Liu. Feedback ghost imaging by gradually distinguishing and concentrating onto the edge area[J]. Chinese Optics Letters, 2021, 19(4): 041102.

References

[1] D. N. Klyshko. Two-photon light: influence of filtration and a new possible experiment. Phys. Lett. A, 1988, 128: 133.

[2] T. B. Pittman, Y. H. Shih, D. V. Strekalov, A. V. Sergienko. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A, 1995, 52: R3429.

[3] A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, J. P. Dowling. Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett., 2001, 86: 1389.

[4] A. Valencia, G. Scarcelli, M. D’Angelo, Y. Shih. Two-photon imaging with thermal light. Phys. Rev. Lett., 2005, 94: 063601.

[5] D. Zhang, Y.-H. Zhai, L.-A. Wu, X.-H. Chen. Correlated two-photon imaging with true thermal light. Opt. Lett., 2005, 30: 2354.

[6] X. H. Chen, Q. Liu, K. H. Luo, L. A. Wu. Lensless ghost imaging with true thermal light. Opt. Lett., 2009, 34: 695.

[7] X. F. Liu, X. H. Chen, X. R. Yao, W. K. Yu, G. J. Zhai, L. A. Wu. Lensless ghost imaging with sunlight. Opt. Lett., 2014, 39: 2314.

[8] W. L. Gong, S. S. Han. A method to improve the visibility of ghost images obtained by thermal light. Phys. Lett. A, 2010, 374: 1005.

[9] F. Ferri, D. Magatti, L. Lugiato, A. Gatti. Differential ghost imaging. Phys. Rev. Lett., 2010, 104: 253603.

[10] D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, K. Wang. Enhancing visibility and resolution in Nth-order intensity correlation of thermal light. Appl. Phys. Lett., 2008, 92: 013802.

[11] X. H. Chen, I. N. Agafonov, K. H. Luo, Q. Liu, R. Xian, M. V. Chekhova, L. A. Wu. High-visibility, high-order lensless ghost imaging with thermal light. Opt. Lett., 2010, 35: 1166.

[12] J. H. Shapiro. Computational ghost imaging. Phys. Rev. A, 2008, 78: R061802.

[13] X. D. Mei, C. L. Wang, Y. M. Fang, T. Song, W. L. Gong, S. S. Han. Influence of the source’s energy fluctuation on computational ghost imaging and effective correction approaches. Chin. Opt. Lett., 2020, 18: 042602.

[14] Z. J. Li, Q. Zhao, W. L. Gong. Performance comparison of ghost imaging versus conventional imaging in photon shot noise cases. Chin. Opt. Lett., 2020, 18: 071101.

[15] M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, S. Han. Lensless Fourier-transform ghost imaging with classical incoherent light. Phys. Rev. A, 2007, 75: 021803.

[16] O. Katz, Y. Bromberg, Y. Silberberg. Compressive ghost imaging. Appl. Phys. Lett., 2009, 95: 131110.

[17] Y. Bromberg, O. Katz, Y. Silberberg. Ghost imaging with a single detector. Phys. Rev. A, 2009, 79: 053840.

[18] B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, M. J. Padgett. 3D computational imaging with single-pixel detectors. Science, 2013, 340: 844.

[19] W. Gong, C. Zhao, Y. Hong, M. Chen, W. Xu, S. Han. Three-dimensional ghost imaging lidar via sparsity constraint. Sci. Rep., 2016, 6: 26133.

[20] H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, D. Zhu. Fourier-transform ghost imaging with hard X rays. Phys. Rev. Lett., 2016, 117: 113901.

[21] D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, D. M. Paganin. Experimental X-ray ghost imaging. Phys. Rev. Lett., 2016, 117: 113902.

[22] A.-X. Zhang, Y.-H. He, L.-A. Wu, L.-M. Chen, B.-B. Wang. Tabletop X-ray ghost imaging with ultra-low radiation. Optica, 2018, 5: 374.

[23] Y. K. Xu, S. H. Sun, W. T. Liu, G. Z. Tang, J. Y. Liu, P. X. Chen. Detecting fast signals beyond bandwidth of detectors based on computational temporal ghost imaging. Opt. Express, 2018, 26: 99.

[24] L. Li, Q. Li, S. Sun, H. Z. Lin, W. T. Liu, P. X. Chen. Imaging through scattering layers exceeding memory effect range with spatial-correlation-achieved point-spread-function. Opt. Lett., 2018, 43: 1670.

[25] B. I. Erkmen. Computational ghost imaging for remote sensing. J. Opt. Soc. Am. A, 2012, 29: 782.

[26] N. D. Hardy, J. H. Shapiro. Computational ghost imaging versus imaging laser radar for three-dimensional imaging. Phys. Rev. A, 2013, 87: 023820.

[27] C. Gao, X. Wang, Z. Wang, Z. Li, G. Du, F. Chang, Z. Yao. Optimization of computational ghost imaging. Phys. Rev. A, 2017, 96: 023838.

[28] J. Huang, D. Shi. Multispectral computational ghost imaging with multiplexed illumination. J. Opt., 2017, 19: 075701.

[29] W.-T. Liu, T. Zhang, J.-Y. Liu, P.-X. Chen, J.-M. Yuan. Experimental quantum state tomography via compressed sampling. Phys. Rev. Lett., 2012, 108: 170403.

[30] W. L. Gong, S. S. Han. High-resolution far-field ghost imaging via sparsity constraint. Sci. Rep., 2015, 5: 9280.

[31] M. Amann, M. Bayer. Compressive adaptive computational ghost imaging. Sci. Rep., 2013, 3: 1545.

[32] Y. Huo, H. He, F. Chen. Compressive adaptive ghost imaging via sharing mechanism and fellow relationship. Appl. Opt., 2016, 55: 3356.

[33] W. K. Yu, M. F. Li, X. R. Yao, X. F. Liu, L. A. Wu, G. J. Zhai. Adaptive compressive ghost imaging based on wavelet trees and sparse representation. Opt. Express, 2014, 22: 7133.

[34] S. Sun, W. T. Liu, H. Z. Lin, E. F. Zhang, J. Y. Liu, Q. Li, P. X. Chen. Multi-scale adaptive computational ghost imaging. Sci. Rep., 2016, 6: 37013.

[35] M.-F. Li, Y.-R. Zhang, X.-F. Liu, X.-R. Yao, K.-H. Luo, H. Fan, L.-A. Wu. A double-threshold technique for fast time-correspondence imaging. Appl. Phys. Lett., 2013, 103: 211119.

[36] F. Soldevila, E. Salvador-Balaguer, P. Clemente, E. Tajahuerce, J. Lancis. High-resolution adaptive imaging with a single photodiode. Sci. Rep., 2015, 5: 14300.

[37] D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. M. Gibson, M. J. Padgett. Adaptive foveated single-pixel imaging with dynamic supersampling. Sci. Adv., 2017, 3: e1601782.

[38] Y. Qian, R. Q. He, Q. Chen, G. H. Gu, F. Shi, W. W. Zhang. Adaptive compressed 3D ghost imaging based on the variation of surface normals. Opt. Express, 2019, 27: 27862.

[39] C. Zhou, T. Tian, C. Gao, W. L. Gong, L. J. Song. Multi-resolution progressive computational ghost imaging. J. Opt., 2019, 21: 055702.

[40] L. Wang, S. Zhao. Fast reconstructed and high-quality ghost imaging with fast Walsh–Hadamard transform. Photon. Res., 2016, 4: 240.

[41] Y. A. Geadah, M. J. G. Corinthios. Natural, dyadic, and sequency order algorithms and processors for the Walsh–Hadamard transform. IEEE Trans. Comput., 1977, C-26: 435.

[42] K. W. C. Chan, M. N. O’Sullivan, R. W. Boyd. Optimization of thermal ghost imaging: high-order correlations vs. background subtraction. Opt. Express, 2010, 18: 5562.

[43] H. D. Ren, S. M. Zhao, J. Gruska. Edge detection based on single-pixel imaging. Opt. Express, 2018, 26: 5501.

[44] L. Wang, L. Zou, S. M. Zhao. Edge detection based on subpixel-speckle-shifting ghost imaging. Opt. Commun., 2018, 407: 181.

Junhao Gu, Shuai Sun, Yaokun Xu, Huizu Lin, Weitao Liu. Feedback ghost imaging by gradually distinguishing and concentrating onto the edge area[J]. Chinese Optics Letters, 2021, 19(4): 041102.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!