中国激光, 2017, 44 (8): 0802003, 网络出版: 2017-09-13   

深冷激光喷丸强化2024-T351铝合金拉伸性能及断口分析 下载: 1134次

Tensile Property and Fracture Analysis of 2024-T351 Aluminum Alloys by Cryogenic Laser Peening
作者单位
江苏大学机械工程学院, 江苏 镇江 212013
引用该论文

孙云辉, 周建忠, 盛杰, 黄舒, 徐苏强, 李京, 徐高峰. 深冷激光喷丸强化2024-T351铝合金拉伸性能及断口分析[J]. 中国激光, 2017, 44(8): 0802003.

Sun Yunhui, Zhou Jianzhong, Sheng Jie, Huang Shu, Xu Suqiang, Li Jing, Xu Gaofeng. Tensile Property and Fracture Analysis of 2024-T351 Aluminum Alloys by Cryogenic Laser Peening[J]. Chinese Journal of Lasers, 2017, 44(8): 0802003.

参考文献

[1] Ahn J, Chen L, He E, et al. Effect of filler metal feed rate and composition on microstructure and mechanical properties of fibre laser welded AA 2024-T3[J]. Journal of Manufacturing Processes, 2017, 25: 26-36.

[2] Lu J Z, Luo K Y, Zhang Y K, et al. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia, 2010, 58(11): 3984-3994.

[3] Wu M, Liu Y Z, Wang T, et al. Deformation behavior and characteristics of sintered porous 2024 aluminum alloy compressed in a semisolid state[J]. Materials Science and Engineering A, 2016, 674: 144-150.

[4] Rodopoulos C A, Kermanidis A T, Statnikov E, et al. The effect of surface engineering treatments on the fatigue behavior of 2024-T351 aluminum alloy[J]. Journal of Materials Engineering and Performance, 2007, 16(1): 30-34.

[5] Liu Y G, Li H M, Li M Q. Characterization of surface layer in TC17 alloy treated by air blast shot peening[J]. Materials & Design, 2015, 65: 120-126.

[6] Wei W, Wang S L, Wei K X, et al. Microstructure and tensile properties of Cu-Al alloys processed by ECAP and rolling at cryogenic temperature[J]. Journal of Alloys and Compounds, 2016, 678: 506-510.

[7] Magalhães D C C, Hupalo M F, Cintho O M. Natural aging behavior of AA7050 Al alloy after cryogenic rolling[J]. Materials Science and Engineering A, 2014, 593: 1-7.

[8] 孟宪凯, 周建忠, 苏纯, 等. 温度对激光喷丸强化2024航空铝合金表面力学性能的影响[J]. 中国激光, 2016, 43(10): 1002003.

    Meng Xiankai, Zhou Jianzhong, Su Chun, et al. Effect of temperature on surface mechanical property of 2024 aluminum alloy treated by laser peening[J]. Chinese J Lasers, 2016, 43(10): 1002003.

[9] 周建忠, 韩煜航, 黄舒, 等. 不同工艺温度对IN718合金激光温喷丸后残余应力和纳米硬度的影响[J]. 中国激光, 2015, 42(7): 0703001.

    Zhou Jianzhong, Han Yuhang, Huang Shu, et al. Effect of different process temperature on residual stress and nano-hardness of warm laser peened IN718 superalloy[J]. Chinese J Lasers, 2015, 42(7): 0703001.

[10] 章海峰, 黄舒, 盛杰, 等. 激光喷丸IN718镍基合金残余应力高温松弛及晶粒演变特征[J]. 中国激光, 2016, 43(2): 0203008.

    Zhang Haifeng, Huang Shu, Sheng Jie, et al. Thermal relaxation of residual stress and grain evolution in laser peening IN718 alloy[J]. Chinese J Lasers, 2016, 43(2): 0203008.

[11] 黄舒. 激光喷丸强化铝合金的疲劳裂纹扩展特性及延寿机理研究[D]. 镇江: 江苏大学, 2012.

    HuangShu. Investigation of laser peening on the fatigue crack growth properties and life extension mechanism of 6061-T6 aluminum alloy[D]. Zhenjiang: Jiangsu University, 2012.

[12] Salimianrizi A, Foroozmehr E, Badrossamay M, et al. Effect of laser shock peening on surface properties and residual stress of Al6061-T6[J]. Optics and Lasers in Engineering, 2016, 77: 112-117.

[13] Ren X D, Ruan L, Yuan S Q, et al. Dislocation polymorphism transformation of 6061-T651 aluminum alloy processed by laser shock processing: Effect of tempering at the elevated temperatures[J]. Materials Science and Engineering A, 2013, 578: 96-102.

[14] Huang S, Sheng J, Zhou J Z, et al. On the influence of laser peening with different coverage areas on fatigue response and fracture behavior of Ti-6Al-4V alloy[J]. Engineering Fracture Mechanics, 2015, 147: 72-82.

[15] Sheng J, Huang S, Zhou J Z, et al. Effect of laser peening with different energies on fatigue fracture evolution of 6061-T6 aluminum alloy[J]. Optics and Laser Technology, 2016, 77: 169-176.

[16] Huang S, Wang Z W, Sheng J, et al. Residual stress distribution and microstructure evolution of AA 6061-T6 treated by warm laser peening[J]. Metals, 2016, 6(11): 6110292.

[17] Park D H, Choi S W, Kim J H, et al. Cryogenic mechanical behavior of 5000- and 6000-series aluminum alloys: Issues on application to offshore plants[J]. Cryogenics, 2015, 68: 44-58.

[18] Yin J G, Lu J, Ma H T, et al. Nanostructural formation of fine grained aluminum alloy by severe plastic deformation at cryogenic temperature[J]. Journal of Materials Science, 2004, 39(8): 2851-2854.

[19] Nayan N. Murty S V S N, Jha A K, et al. Mechanical properties of aluminium-copper-lithium alloy AA2195 at cryogenic temperatures[J]. Materials & Design, 2014, 58: 445-450.

[20] Moreno-Valle E C, Sabirov I, Perez-Prado M T, et al. . Effect of the grain refinement via severe plastic deformation on strength properties and deformation behavior of an Al6061 alloy at room and cryogenic temperatures[J]. Materials Letters, 2011, 65(19/20): 2917-2919.

[21] Shahsavari A, Karimzadeh F, Rezaeian A, et al. Significant increase in tensile strength and hardness in 2024 aluminum alloy by cryogenic rolling[J]. Procedia Materials Science, 2015, 11: 84-88.

[22] Ye C, Suslov S, Lin D, et al. Microstructure and mechanical properties of copper subjected to cryogenic laser shock peening[J]. Journal of Applied Physics, 2011, 110(8): 083504.

[23] Ye C, Suslov S, Lin D, et al. Cryogenic ultrahigh strain rate deformation induced hybrid nanotwinned microstructure for high strength and high ductility[J]. Journal of Applied Physics, 2014, 115(21): 213519.

[24] Ye C, Suslov S, Lin D, et al. Deformation-induced martensite and nanotwins by cryogenic laser shock peening of AISI 304 stainless steel and the effects on mechanical properties[J]. Philosophical Magazine, 2012, 92(11): 1369-1389.

[25] 陈鼎, 黎文献. 深冷处理下铝和铝合金的晶粒转动[J]. 中南工业大学学报, 2000, 31(6): 544-547.

    Chen Ding, Li Wenxian. Grain preferred orientation of Al and Al alloys through cryogenic treatment[J]. Journal of Central South University of Technology, 2000, 31(6): 544-547.

[26] Zhou J Z, Xu S Q, Huang S, et al. Tensile properties and microstructures of a 2024-T351 aluminum alloy subjected to cryogenic treatment[J]. Metals, 2016, 6(11): 6110279.

孙云辉, 周建忠, 盛杰, 黄舒, 徐苏强, 李京, 徐高峰. 深冷激光喷丸强化2024-T351铝合金拉伸性能及断口分析[J]. 中国激光, 2017, 44(8): 0802003. Sun Yunhui, Zhou Jianzhong, Sheng Jie, Huang Shu, Xu Suqiang, Li Jing, Xu Gaofeng. Tensile Property and Fracture Analysis of 2024-T351 Aluminum Alloys by Cryogenic Laser Peening[J]. Chinese Journal of Lasers, 2017, 44(8): 0802003.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!