International Journal of Extreme Manufacturing, 2020, 2 (1): 015401, Published Online: Jun. 4, 2020  

Periodic energy decomposition analysis for electronic transport studies as a tool for atomic scale device manufacturing

Author Affiliations
1 Centre of Micro/Nano Manufacturing Technology, MNMT-Dublin, University College Dublin, Ireland
2 State Key Laboratory of Precision Measuring Technology and Instruments, Centre of Micro/Nano
Copy Citation Text

Paven Thomas Mathew, Fengzhou Fang. Periodic energy decomposition analysis for electronic transport studies as a tool for atomic scale device manufacturing[J]. International Journal of Extreme Manufacturing, 2020, 2(1): 015401.

References

[1] Mathew P T and Fang F Z 2018 Advances in molecular electronics: a brief review Engineering 4 760–71

[2] Tao N J 2009 Electron transport in molecular junctions Nanoscience and Technology (London: World Scientific) pp 185–93

[3] Liu R, Wang C-K and Li Z-L 2016 A method to study electronic transport properties of molecular junction: onedimension transmission combined with three-dimension correction approximation (OTCTCA) Sci. Rep. 6 21946

[4] Kole A and Ang D S 2018 First principle investigation of electronic transport properties of the edge shaped grapheneporphine molecular junction device AIP Adv. 8 085009

[5] Yuan S, Wang S, Kong Z, Xu Z, Yang L, Wang D, Ling Q and Wang Y 2018 Theoretical studies of the spin-dependent electronic transport properties in ethynyl-terminated ferrocene molecular junctions Micromachines 9 95

[6] Mathew P T, Fang F Z, Nadal L V, Cronin L and Georgiev V 2019 First principle simulations of current flow in inorganic molecules: polyoxometalates (POMs) 5th Joint EUROSOI - ULIS 2019 Conf. (Grenoble: IEEE)

[7] Raupach M and Tonner R 2015 A periodic energy decomposition analysis method for the investigation of chemical bonding in extended systems J. Chem. Phys. 142 194105

[8] Niu T and Li A 2013 Exploring single molecules by scanning probe microscopy: porphyrin and phthalocyanine J. Phys. Chem. Lett. 4 4095–102

[9] Sun L, Diaz-Fernandez Y A, Gschneidtner T A, Westerlund F, Lara-Avila S and Moth-Poulsen K 2014 Single-molecule electronics: from chemical design to functional devices Chem. Soc. Rev. 43 7378–411

[10] Linstead R P 1934 212 phthalocyanines: I. A new type of synthetic colouring matters J. Chem. Soc. Resumed. 0 1016

[11] Simic-Glavaski B 1989 Phthalocyanines in molecular electronic devices Images 21st Century Proc. Annu. Int. Eng. Med. Biol. Soc. (Seattle, WA) (Piscataway, NJ: IEEE) pp 1325–6

[12] van Staden J (Koos) F 2015 Application of phthalocyanines in flow- and sequential-injection analysis and microfluidics systems: a review Talanta 139 75–88

[13] Thudichum J L W 1867 On cruentine Rep. Med. Off. Privy Counc., X Appendix 7:227

[14] Zhang X, Zhang Y and Jiang J 2004 Geometry and electronic structure of metal free porphyrazine, phthalocyanine and naphthalocyanine as well as their magnesium complexes J. Mol. Struct. Theochem 673 103–8

[15] Frenking G and Shaik S 2014 The chemical bondfundamentals and models Chem. Bond- Period. Table (New York: Wiley) p 566

[16] Selzer Y, Salomon A and Cahen D 2002 The importance of chemical bonding to the contact for tunneling through alkyl chains J. Phys. Chem. B 106 10432–9

[17] Kitaura K and Morokuma K 1976 A new energy decomposition scheme for molecular interactions within the Hartree–Fock approximation Int. J. Quantum Chem. 10 325–40

[18] Ziegler T and Rauk A 1977 On the calculation of bonding energies by the Hartree–Fock Slater method: I. The transition state method Theor. Chim. Acta 46 1–10

[19] Ziegler T and Rauk A 1979 A theoretical study of the ethylenemetal bond in complexes between copper(1+), silver(1+), gold(1+), platinum(0) or platinum(2+) and ethylene, based on the Hartree–Fock–Slater transition-state method Inorg. Chem. 18 1558–65

[20] Pecher L and Tonner R 2018 Deriving bonding concepts for molecules, surfaces, and solids with energy decomposition analysis for extended systems Wiley Interdiscip. Rev. Comput. Mol. Sci. 9 e1401

[21] Grimme S, Antony J, Ehrlich S and Krieg H 2010 A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J. Chem. Phys. 132 154104

[22] Datta S 2002 The non-equilibrium Green’s function (NEGF) formalism: an elementary introduction Dig. Int. Electron Devices Meet (San Francisco, CA: IEEE) pp 703–6

[23] AMS DFTB 2018 Theoretical Chemistry (Amsterdam: Vrije Universiteit)

[24] Datta S 2005 Quantum Transport: Atom to Transistor (Cambridge: Cambridge University Press)

[25] BAND 2018 Theoretical Chemistry (Amsterdam: Vrije Universiteit)

[26] Vilà-Nadal L, Mitchell S G, Markov S, Busche C, Georgiev V, Asenov A and Cronin L 2013 Towards polyoxometalatecluster- based nano-electronics Chem.—Eur. J. 19 16502–11

[27] Perdew J P 1986 Density-functional approximation for the correlation energy of the inhomogeneous electron gas Phys. Rev. B 33 8822–4

[28] Perdew J P 1986 Erratum: density-functional approximation for the correlation energy of the inhomogeneous electron gas Phys. Rev. B 34 7406–7406

[29] Becke A D 1986 Density functional calculations of molecular bond energies J. Chem. Phys. 84 4524–9

[30] Becke A D 1988 Density-functional exchange-energy approximation with correct asymptotic behavior Phys. Rev. A 38 3098–100

[31] Liu W, Ruiz V G, Zhang G-X, Santra B, Ren X, Scheffler M and Tkatchenko A 2013 Structure and energetics of benzene adsorbed on transition-metal surfaces: density-functional theory with van der Waals interactions including collective substrate response New J. Phys. 15 053046

[32] Fihey A, Hettich C, Touzeau J, Maurel F, Perrier A, K?hler C, Aradi B and Frauenheim T 2015 SCC-DFTB parameters for simulating hybrid gold-thiolates compounds J. Comput. Chem. 36 2075–87

[33] Sch?fer A, Horn H and Ahlrichs R 1992 Fully optimized contracted Gaussian basis sets for atoms Li to Kr J. Chem. Phys. 97 2571–7

[34] Zhao L, von Hopffgarten M, Andrada D M and Frenking G 2018 Energy decomposition analysis: energy decomposition analysis, Wiley interdiscip Rev. Comput. Mol. Sci. 8 e1345

[35] Levine D S and Head-Gordon M 2017 Energy decomposition analysis of single bonds within Kohn–Sham density functional theory Proc. Natl Acad. Sci. 114 12649–56

[36] Tivanski A V, He Y, Borguet E, Liu H, Walker G C and Waldeck D H 2005 Conjugated Thiol linker for enhanced electrical conduction of gold?molecule contacts J. Phys. Chem. B 109 5398–402

[37] Oliveira A F, Philipsen P and Heine T 2015 DFTB parameters for the periodic table: II. Energies and energy gradients from hydrogen to calcium J. Chem. Theory Comput. 11 5209–18

[38] Sayed S Y, Fereiro J A, Yan H, McCreery R L and Bergren A J 2012 Charge transport in molecular electronic junctions: compression of the molecular tunnel barrier in the strong coupling regime Proc. Natl Acad. Sci. 109 11498–503

[39] Fang F Z, Zhang N, Guo D, Ehmann K, Cheung B, Liu K and Yamamura K 2019 Towards atomic and close-to-atomic scale manufacturing Int. J. Extreme Manuf. 1 012001

[40] Zhao Y, Ding J and Huang X-B 2014 Synthesis and selfassembly of phthalocyanines bearing sulfur-containing substituents Chin. Chem. Lett. 25 46–50

[41] Medforth C J, Wang Z, Martin K E, Song Y, Jacobsen J L and Shelnutt J A 2009 Self-assembled porphyrin nanostructures Chem. Commun. 0 7261

[42] Hakola H, Sariola-Leikas E, J?ntti P, Mokus T, Stranius K, Efimov A and Tkachenko N V 2016 Formation and stability of porphyrin and phthalocyanine self-assembled monolayers on ZnO surfaces J. Porphyr. Phthalocyanines. 20 1264–71

Paven Thomas Mathew, Fengzhou Fang. Periodic energy decomposition analysis for electronic transport studies as a tool for atomic scale device manufacturing[J]. International Journal of Extreme Manufacturing, 2020, 2(1): 015401.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!