强激光与粒子束, 2019, 31 (10): 103204, 网络出版: 2019-10-14  

环氧树脂基碳纳米复合电磁屏蔽材料研究

Study on epoxy resin-based carbon nanocomposite for electromagnetic shielding
李克训 1,2,*马江将 1,2张泽奎 1,2马晨 1,2贾琨 1,2刘伟 1,2张捷 1,2李静 1,2王东红 1,2
作者单位
1 中国电子科技网络信息安全有限公司, 成都 610041
2 中国电子科技集团公司第三十三研究所 电磁防护材料及技术山西省重点实验室, 太原 030032
引用该论文

李克训, 马江将, 张泽奎, 马晨, 贾琨, 刘伟, 张捷, 李静, 王东红. 环氧树脂基碳纳米复合电磁屏蔽材料研究[J]. 强激光与粒子束, 2019, 31(10): 103204.

Li Kexun, Ma Jiangjiang, Zhang Zekui, Ma Chen, Jia Kun, Liu Wei, Zhang Jie, Li Jing, Wang Donghong. Study on epoxy resin-based carbon nanocomposite for electromagnetic shielding[J]. High Power Laser and Particle Beams, 2019, 31(10): 103204.

参考文献

[1] Gajsek P, Ravazzani P, Wiart J, et al. Electromagnetic field exposure assessment in Europe radiofrequency fields (10 MHz-6 GHz)[J]. J Expo Sci Environ Epidemiol, 2015, 25(1): 37-44.

[2] Carlberg M, Koppel T, Ahonen M, et al. Case-control study on occupational exposure to extremely low-frequency electromagnetic fields and glioma risk[J]. Am J Ind Med, 2017, 60(5): 494-503.

[3] Zou T, Shi C, Zhao N. Microwave absorbing properties of the Archimedean plane spiral antenna array/epoxy resin composites[J]. Materials Science and Engineering B, 2007, 142: 51-54.

[4] Oh J Hn, Oh K S, Kim C G. Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges[J]. Composites: Part B, 2004, 35: 49-56.

[5] Iwamaru T, Katsumata H, Uekusa S. Development of microwave absorbing materials prepared from a polymer binder including Japanese lacquer and epoxy resin[J]. Physics Procedia, 2012, 23: 69-72.

[6] Biswas S, Panja S S, Bose S. Tailored distribution of nanoparticles in biphasic polymeric blends as emerging materials for suppressing electromagnetic radiation: challenges and prospects[J]. J Mater Chem C, 2018, 13 (6) : 3120-3142.

[7] Lü L, Liu J, Liu H, et al. An overview of electrically conductive polymer nanocomposites toward electromagnetic interference shielding[J]. Eng Sci, 2018, 2: 26-42.

[8] Wan Y J, Zhu P L, Yu S H, et al. Graphene paper for exceptional EMI shielding performance using large-sized graphene oxide sheets and doping strategy[J]. Carbon, 2017, 122: 74-81.

[9] Shishkin A, Koppel T, Mironov V, et al. Microwave reflectance and transmittance properties of conductive composite materials[J]. Energy Procedia, 2017, 113: 354-361.

[10] Mondal S, Nayak L, Rahaman M, et al. An effective strategy to enhance mechanical, electrical, and electromagnetic shielding effectiveness of chlorinated polyethylene-carbon nanofiber nanocomposites[J]. Compos B Eng, 2017, 109: 155-169.

[11] Li M, Xiao S Q, Bai Y Y, et al. An ultrathin and broadband radar absorber using resistive FSS[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 748-751.

[12] Noor A, Hu Z. Metamaterial dual polarised resistive Hilbert curve array radar absorber[J]. Microw Antennas Propag, 2010, 4(6): 667-673.

[13] Zhou E, Xi J, Gao C, et al. Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films[J]. Carbon, 2018, 133: 316-322.

[14] Wang C, Murugadoss V, Kong J, et al. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding[J]. Carbon, 2018, 140: 696-733.

[15] Zeng Z, Jin H, Chen M, et al. Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding[J]. Adv Funct Mater, 2016, 26(2): 303-310.

[16] Chen Z, Xu C, Ma C, et al. Lightweight and flexible grapheme foam composites for high-performance electromagnetic interference shielding[J]. Adv Mater, 2013, 25(9) : 1296-1300.

[17] Zhao D L, Li X, Shen Z M. Electromagnetic and microwave absorbing properties of multi-walled-carbon nanotubes filled with Ag nanowires[J]. Mat Sci Eng B, 2008, 150(2): 105-110.

[18] Fan Z J, Lou G H, Zhang Z F, et al. Electromagnetic and microwave absorbing properties of multiwalled carbon nanotubes/polymer composites[J]. Mat Sci Eng B, 2006, 132(1/2): 85-89.

[19] Sandler J K W, Kirk J E, Kinloch I A, et al. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites[J]. Polymer, 2003, 44(19): 5893-5899.

[20] Martin C A, Sandler J K W, Shaffer M S P, et al. Formation of percolating networks in multi-wall carbon nanotube-epoxy composites[J]. Compos Sci Technol, 2004, 64(15): 1236-2309.

[21] Moisala A, Li Q, Kinloch IA, et al. Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites[J]. Compos Sci Technol, 2006, 66(10): 1285-1288.

[22] Liu L, Matitsine S, Gan Y B, et al. Frequency dependence of effective permittivity of carbon nanotube composites[J]. J Appl Phys, 2007, 101: 094106.

[23] Yuen S M, Ma C C M, Wu H H, et al. Preparation and thermal, electrical, and morphological properties of multiwalled carbon nanotube and epoxy composites[J]. J Appl Polym Sci, 2007, 103(2): 1272-1278.

[24] Wichmann M H G, Sumfleth J, Fiedler B, et al. Multiwall carbon nanotube/epoxy composites produced by a masterbatch process[J]. Mech Comp Ma, 2006, 42(5): 395-406.

[25] Boncel S, Krzysztof K K, Walczak K Z, et al. Infiltration of highly aligned carbon nanotube arrays with molten polystyrene[J]. Materials Letters, 2011, 65: 2299-2303.

[26] Bauhofer W, Kovacs J Z. A review and analysis of electrical percolation in carbon nanotube polymer composites[J]. Composites Science and Technology, 2009, 69: 1486-1498.

[27] 李克训, 马江将, 赵亚丽, 等. 垂直定向碳纳米管的化学气相沉积法制备及其应用进展[J]. 材料导报, 2016, 30(11): 27-32(. Li Kexun, Ma Jiangjiang, Zhao Yali, et al. Progress in fabrication and application of vertically aligned carbon nanotubes by chemical vapor deposition. Materials Reports, 2016, 30(11): 27-32).

[28] Hata K, Futaba D N, Iijima S, et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes[J]. Science, 2004, 306(5700): 1362-1364.

[29] Zhang G, Mann D, Zhang L, et al. Ultra-high-yield growth of vertical single-walled carbon nanotubes: hidden roles of hydrogen and oxygen[J]. Proc Nat Acad Sci, 2005, 102(45): 16141-16145.

[30] Fan S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties[J]. Science, 1999, 283(5401): 512-514.

[31] Chen X Q, Saito T, Yamada H, et al. Aligning single-wall carbon nanotubes with an alternating-current electric field[J]. Appl Phys Lett, 2001, 78(23): 3714-3716.

[32] Heremans J, Olk C H, Morelli D T. Magnetic susceptibility of carbon structures[J]. Phys Rev B, 1994, 49(21): 15122-15125.

[33] Yoon D K, Lee S R, Kim Y H, et al. Large-area, highly aligned cylindrical perfluorinated supramolecular dendrimers using magnetic fields[J]. Adv Mater, 2006, 18(4): 509-513.

[34] Zhang M, Fang S, Zakhidov A A, et al. Strong, transparent, multifunctional, carbon nanotube sheets[J]. Science 2005, 309(5738): 1215-1219.

[35] Zhang M, Atkinson K R, Baughman R H. Multifunctional carbon nanotube yarns by downsizing an ancient technology[J]. Science 2004, 306(5700): 1358-1361.

[36] Liu P, Liu L, Fan S, et al. Fast high-temperature response of carbon nanotube film and its application as an incandescent display[J]. Adv Mater, 2009, 21(35): 3563-3566.

[37] Jiang S, Hou P X, Chen M L, et al. Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes[J]. Sci Adv 2018, 4: 9264.

[38] 钟铭龙, 黄玮, 王朝阳. 等. 辐射发制备Pd掺杂碳气凝胶粉末[J]. 强激光与粒子束, 2015, 25(3): 633-636(Zhong Minglong, Huang Wei, Wang Chaoyang, et al. Preparation of Pd-doped carbon aerogel power with radiation method. High Power Laser and Particle Beams, 2015, 25(3): 633-636)

[39] Arjmand M, Chizari K, Krause B, et al. Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites[J]. Carbon, 2016, 98: 358-372.

李克训, 马江将, 张泽奎, 马晨, 贾琨, 刘伟, 张捷, 李静, 王东红. 环氧树脂基碳纳米复合电磁屏蔽材料研究[J]. 强激光与粒子束, 2019, 31(10): 103204. Li Kexun, Ma Jiangjiang, Zhang Zekui, Ma Chen, Jia Kun, Liu Wei, Zhang Jie, Li Jing, Wang Donghong. Study on epoxy resin-based carbon nanocomposite for electromagnetic shielding[J]. High Power Laser and Particle Beams, 2019, 31(10): 103204.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!