激光与光电子学进展, 2019, 56 (8): 080003, 网络出版: 2019-07-26   

基于光子晶体的红外隐身材料研究进展 下载: 1671次

Research Progress of Infrared Stealth Materials Based on Photonic Crystals
作者单位
1 南京工程学院材料工程学院, 江苏 南京 211167
2 江苏省先进结构材料与应用技术重点实验室, 江苏 南京 211167
引用该论文

卢仪, 卜小海, 李栋先, 刘飞佑, 张泽武. 基于光子晶体的红外隐身材料研究进展[J]. 激光与光电子学进展, 2019, 56(8): 080003.

Yi Lu, Xiaohai Bu, Dongxian Li, Feiyou Liu, Zewu Zhang. Research Progress of Infrared Stealth Materials Based on Photonic Crystals[J]. Laser & Optoelectronics Progress, 2019, 56(8): 080003.

参考文献

[1] Stein A, Wilson B E, Rudisill S G. Design and functionality of colloidal-crystal-templated materials-chemical applications of inverse opals[J]. Chemical Society Reviews, 2013, 42(7): 2763-2803.

[2] Cong H L, Yu B, Tang J G, et al. Current status and future developments in preparation and application of colloidal crystals[J]. Chemical Society Reviews, 2013, 42(19): 7774-7800.

[3] Moghadam R Z, Ahmadvand H, Jannesari M. Design and fabrication of multi-layers infrared antireflection coating consisting of ZnS and Ge on ZnS substrate[J]. Infrared Physics & Technology, 2016, 75: 18-21.

[4] Armstrong E. O'Dwyer C. Artificial opal photonic crystals and inverse opal structures-fundamentals and applications from optics to energy storage[J]. Journal of Materials Chemistry C, 2015, 3(24): 6109-6143.

[5] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059-2062.

[6] Fink Y, Winn J N, Fan S. et al. A dielectric omnidirectional reflector[J]. Science, 1998, 282(5394): 1679-1682.

[7] Wu C J, Chu B H, Weng M T, et al. Enhancement of bandwidth in a chirped quarter-wave dielectric mirror[J]. Journal of Electromagnetic Waves and Applications, 2009, 23(4): 437-447.

[8] Lee H M. 107(9): 09E149[J]. Wu J C. Transmittance spectra in one-dimensional superconductor-dielectric photonic crystal. Journal of Applied Physics, 2010.

[9] Hsu H T, Kuo F Y, Wu C J. Optical properties of a high-temperature superconductor operating in near zero-permittivity region[J]. Journal of Applied Physics, 2010, 107(5): 053912.

[10] Wu C J, Liu C L, Kuo W K. Analysis of thickness-dependent optical properties in a one-dimensional superconducting photonic crystal[J]. Journal of Electromagnetic Waves & Applications, 2009, 23(8/9): 1113-1122.

[11] Krokhin A A, Reyes E, Gumen L. Low-frequency index of refraction for a two-dimensional metallodielectric photonic crystal[J]. Physical Review B, 2007, 75(4): 045131.

[12] Pimenov A, Loidl A, Pimenov A. et al. Conductivity and permittivity of two-dimensional metallic photonic crystals[J]. Physical Review Letters, 2006, 96(6): 063903.

[13] Zi J, Wan J, Zhang C. Large frequency range of negligible transmission in one-dimensional photonic quantum well structures[J]. Applied Physics Letters, 1998, 73(15): 2084-2086.

[14] Srivastava R, Pati S, Ojha S P. Enhancement of omnidirectional reflection in photonic crystal heterostructures[J]. Progress in Electromagnetics Research B, 2008, 1: 197-208.

[15] 刘圆圆, 李旭峰, 赵亚丽, 等. 金属薄膜的缺陷模对一维光子晶体滤波特性的影响[J]. 激光与光电子学进展, 2018, 55(5): 053103.

    Liu Y Y, Li X F, Zhao Y L, et al. Influence of defect modes of metal films on filtering characteristics of one-dimensional photonic crystals[J]. Laser & Optoelectronics Progress, 2018, 55(5): 053103.

[16] Eissa M F, Aly A H. Improve the efficiency of scintillation detectors using reflectors based on photonic crystals arrays[J]. Journal of Electromagnetic Analysis and Applications, 2014, 6(2): 25-29.

[17] Ramanujam N R. Wilson K S J. Optical properties of silver nanocomposites and photonic band gap: Pressure dependence[J]. Optics Communications, 2016, 368: 174-179.

[18] Dai X Y, Xiang Y J, Wen S C. Broad omnidirectional reflector in the one-dimensional ternary photonic crystals containing superconductor[J]. Progress in Electromagnetics Research, 2011, 120: 17-34.

[19] Amri R, Sahel S, Gamra D, et al. Photonic band gap and defects modes in inorganic/organic photonic crystal based on Si and HMDSO layers deposited by sputtering and PECVD[J]. Optical Materials, 2018, 76: 222-230.

[20] Kang Y Q, Liu H M. Wideband absorption in one dimensional photonic crystal with graphene-based hyperbolic metamaterials[J]. Superlattices and Microstructures, 2018, 114: 355-360.

[21] Hung H C, Wu C J, Yang T J, et al. Enhancement of near-infrared photonic band gap in a doped semiconductor photonic crystal[J]. Progress in Electromagnetics Research, 2012, 125: 219-235.

[22] Zhang W G, Xu G Y, Zhang J C, et al. Infrared spectrally selective low emissivity from Ge/ZnS one-dimensional heterostructure photonic crystal[J]. Optical Materials, 2014, 37: 343-346.

[23] 李康文, 李享成, 陈平安. 基于异质结构的一维光子晶体红外3~5 μm高反射镜设计[J]. 光学学报, 2018, 38(9): 0922001.

    Li K W, Li X C, Chen P A, et al. High reflector designed with one-dimensional photonic crystal in 3-5 μm infrared region based on hetero-structure[J]. Acta Optica Sinica, 2018, 38(9): 0922001.

[24] 赵大鹏, 时家明, 汪家春, 等. 中长波红外双波段全向反射镜的设计[J]. 激光与红外, 2008, 38(5): 454-457.

    Zhao D P, Shi J M, Wang J C, et al. Design on a dual-band omnidirectional reflector of MWIR and LWIR[J]. Laser & Infrared, 2008, 38(5): 454-457.

[25] 刘必鎏, 时家明, 赵大鹏, 等. 一种基于光子晶体的红外伪装材料[J]. 红外技术, 2008, 30(9): 512-515.

    Liu B L, Shi J M, Zhao D P, et al. A kind of infrared camouflage material based on photonic crystals[J]. Infrared Technology, 2008, 30(9): 512-515.

[26] Ho C P, Pitchappa P, Kropelnicki P, et al. Development of polycrystalline silicon based photonic crystal membrane for mid-infrared applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(4): 94-100.

[27] He X, Li H, Zhu Z Y, et al. Strain engineering in monolayer WS2, MoS2, and the WS2/MoS2 heterostructure[J]. Applied Physics Letters, 2016, 109(17): 173105.

[28] Wang Q C, Wang J C, Zhao D P, et al. Investigation of terahertz waves propagating through far infrared/CO2 laser stealth-compatible coating based on one-dimensional photonic crystal[J]. Infrared Physics & Technology, 2016, 79: 144-150.

[29] Wang C, Wang L, Chen Z H, et al. Production of flexible photonic crystal films for compatible far infrared and laser-band camouflage by vacuum coating method[J]. Journal of Russian Laser Research, 2016, 37(3): 308-312.

[30] Miao L, Shi J M, Wang J C, et al. Heterogeneous doped one-dimensional photonic crystal with low emissivity in infrared atmospheric window[J]. Optical Engineering, 2016, 55(5): 057101.

[31] 张继魁, 时家明, 苗雷, 等. 近中红外与1.06 μm和1.54 μm激光兼容隐身光子晶体研究[J]. 发光学报, 2016, 37(9): 1130-1134.

    Zhang J K, Shi J M, Miao L, et al. Research on compatible stealth photonic crystal against near/middle infrared and 1.06 μm and 1.54 μm lasers[J]. Chinese Journal of Luminescence, 2016, 37(9): 1130-1134.

[32] Wang Z X, Cheng Y Z, Nie Y, et al. Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications[J]. Journal of Applied Physics, 2014, 116(5): 054905.

[33] Zhang J K, Shi J M, Zhao D P, et al. Realization of compatible stealth material for infrared, laser and radar based on one-dimensional doping-structure photonic crystals[J]. Infrared Physics & Technology, 2017, 85: 62-65.

[34] 张继魁, 赵大鹏, 汪家春, 等. 基于光子晶体的热红外迷彩[J]. 光学学报, 2016, 36(12): 1216001.

    Zhang J K, Zhao D P, Wang J C, et al. Thermal infrared pattern painting based on photonic crystals[J]. Acta Optica Sinica, 2016, 36(12): 1216001.

[35] Qi D, Wang X, Cheng Y Z, et al. Design and characterization of one-dimensional photonic crystals based on ZnS/Ge for infrared-visible compatible stealth applications[J]. Optical Materials, 2016, 62: 52-56.

[36] Yablonovitch E, Gmitter T J, Leung K M, et al. 3-dimensional photonic band structure[J]. Optical and Quantum Electronics, 1992, 24(2): S273-S283.

[37] Lin S Y, Fleming J G, Hetherington D L, et al. A three-dimensional photonic crystal operating at infrared wavelengths[J]. Nature, 1998, 394(6690): 251-253.

[38] Enoch S, Simon J J, Escoubas L, et al. Simple layer-by-layer photonic crystal for the control of thermal emission[J]. Applied Physics Letters, 2005, 86(26): 261101.

[39] Chernow V F, Alaeian H, Dionne J A, et al. Polymer lattices as mechanically tunable 3-dimensional photonic crystals operating in the infrared[J]. Applied Physics Letters, 2015, 107(10): 101905.

[40] 张连超, 邱丽莉, 芦薇, 等. 蛋白石型光子晶体红外隐身材料的制备[J]. 物理学报, 2017, 66(8): 084208.

    Zhang L C, Qiu L L, Lu W, et al. Preparation of opal photonic crystal infrared stealth materials[J]. Acta Physica Sinica, 2017, 66(8): 084208.

[41] Hurtado J L M, Kraeh C, Popescu A, et al. . In situ synthesis of VO2 for tunable mid-infrared photonic devices[J]. RSC Advances, 2015, 5(73): 59506-59512.

[42] Ruhl T, Spahn P, Hermann C, et al. Double-inverse-opal photonic crystals: The route to photonic bandgap switching[J]. Advanced Functional Materials, 2006, 16(7): 885-890.

[43] Aryal D P, Tsakmakidis K L, Jamois C, et al. Complete and robust bandgap switching in double-inverse-opal photonic crystals[J]. Applied Physics Letters, 2008, 92(1): 011109.

[44] Aliev A E, Zakhidov A A, Baughman R H, et al. Chalcogenide inverted opal photonic crystal as infrared pigments[J]. International Journal of Nanoscience, 2006, 5(1): 157-172.

[45] Arpin K A, Losego M D, Cloud A N, et al. Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification[J]. Nature Communications, 2013, 4: 2630.

[46] 王运锋, 宋金璠, 唐晓燕, 等. NaGd(WO4)2∶Yb 3+/Tm 3+反蛋白石光子晶体的制备与上转换发光调制研究 [J]. 无机材料学报, 2016, 31(10): 1058-1062.

    Wang Y F, Song J F, Tang X Y, et al. Preparation and modified upconversion luminescence in NaGd (WO4)2∶Yb 3+/Tm 3+ inverse opal photonic crystals [J]. Journal of Inorganic Materials, 2016, 31(10): 1058-1062.

卢仪, 卜小海, 李栋先, 刘飞佑, 张泽武. 基于光子晶体的红外隐身材料研究进展[J]. 激光与光电子学进展, 2019, 56(8): 080003. Yi Lu, Xiaohai Bu, Dongxian Li, Feiyou Liu, Zewu Zhang. Research Progress of Infrared Stealth Materials Based on Photonic Crystals[J]. Laser & Optoelectronics Progress, 2019, 56(8): 080003.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!