中国激光, 2011, 38 (4): 0406004, 网络出版: 2011-03-30   

利用单负材料设计全向滤波器

Design of Omnidirectional Filter Using Single-Negative Materials
作者单位
常州大学数理学院, 江苏 常州 213164
摘要
基于法布里珀罗腔理论,研究了由2块相同单负材料作为反射镜构成微腔结构的共振特性。若反射镜是负ε材料,在一定条件下可实现TM腔模的全向透射;若是负μ材料,则可实现TE腔模的全向透射。随着入射角的增大,全向透射谱变窄,品质因子提高。腔中介质折射率的提高,可有效缩短TM全向透射微腔结构的尺寸,但对TE全向透射微腔结构尺寸的调制就稍弱。单负材料损耗的存在,不会破坏两种微腔结构的全向共振特性,但随着入射角的增大腔模的透射率有所降低。通过优化处理给出了这两种微腔结构能实现全向透射时所需满足的各种条件,为全向滤波器的设计提供理论指导。
Abstract
Based on the theory of Fabry-Perot cavity, the resonant characteristics of microcavity structure are studied, which is formed by reflectors composed of two slabs of the same single-negative materials. If the reflectors are composed of ε-negative (ENG) material, the omnidirectional transmission of TM mode can be realized under certain conditions; for the case of μ-negative (MNG) material, the omnidirectional transmission of TE mode can be realized. The omnidirectional transmission spectrum narrows and quality factor increases with the increase of incident angle. The increase of the refractive index of material in cavity effectively reduces the size of microcavity structure for omnidirectional transmission of TM mode, but the modulation is less obvious for that of TE mode. The existence of single-negative material loss does not break the characteristics of omnidirectional resonance of two microcavity structures, but the transmissivity of resonant mode reduces with the incident angle. Through optimized processing, the conditions are found for these two types of microcavities to realize the omnidirectional transmission, which provides useful theoretical guidance to the design of omnidirectional filters.

陈宪锋, 张辉霞, 王光, 沈小明. 利用单负材料设计全向滤波器[J]. 中国激光, 2011, 38(4): 0406004. Chen Xianfeng, Zhang Huixia, Wang Guang, Shen Xiaoming. Design of Omnidirectional Filter Using Single-Negative Materials[J]. Chinese Journal of Lasers, 2011, 38(4): 0406004.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!