Matter and Radiation at Extremes, 2018, 3 (2): 85, Published Online: May. 3, 2018  

Warm dense matter research at HIAF

Author Affiliations
1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Science, Xi'an Jiaotong University, Xi'an 710049, China
4 Department of Engineering Physics, Tsinghua University, Beijing 100084, China
Copy Citation Text

Rui Cheng, Yu Lei, Xianming Zhou, Yuyu Wang, Yanhong Chen, Yongtao Zhao, Jieru Ren, Lina Sheng, Jiancheng Yang, Zimin Zhang, Yingchao Du, Wei Gai, Xinwen Ma, Guoqing Xiao. Warm dense matter research at HIAF[J]. Matter and Radiation at Extremes, 2018, 3(2): 85.

References

[1] R.C. Davidson, Frontiers in High Energy Density Physics, National Research Council of the National Academies, National Academies Press, Washington, DC, USA, 2003.

[2] R.W. Lee, D. Kalantar, J. Molitoris, Warm Dense Matter: An Overview, 2004 in Livemore, UCRL-TR-203844.

[3] G.W. Collins, L.B. Da Silva, P. Celliers, D.M. Gold, M.E. Foord, et al., Measurements of the equation of state of deuterium at the fluid insulatormetal transition, Science 281 (1998) 1178.

[4] N.A. Tahir, A. Shutov, A.R. Piriz, Th. St€ohlker, High energy density physics research using intense heavy ion beam at FAIR: the HEDgeHOB program, J. Phy.: Conference Series 688 (2016) 012118.

[5] D.H.H. Hoffmann, V.E. Fortov, M. Kuster, V. Mintsev, B.Y. Sharkov, et al., High energy density physics generated by intense heavy ion beams, Astrophy Space Sci. 322 (2009) 167.

[6] Y.T. Zhao, R. Cheng, Y.Y. Wang, X.M. Zhou, Y. Lei, et al., Heigh energy density physics research at IMP, Lanzhou, China, High Power Laser Science and Engineering 2 (2014) e39.

[7] P. Renaudin, C. Blancard, G. Faussurier, P. Noiret, Combined pressure and electrical-resistivity measurements of warm dense aluminum and titanium plasmas, Phys. Rev. Lett. 88 (2002) 215001.

[8] I. Krisch, H.J. Kunze, Measurements of electrical conductivity and mean ionization state of nonideal aluminumplasmas, Phys. Rev.E 58 (1998) 6557.

[9] S. Saleem, J. Haun, H.-J. Kunze, Electrical conductivity measurements of strongly coupled W plasmas, Phys. Rev. E 64 (2001) 056403.

[10] T. Sasaki, M. Nakajima, T. Kawamura, K. Horioka, Semi-empirical approach to pulsed wire discharges in water as a method for warm dense matter studies, J. Plasma Fusion Res. 81 (12) (2005) 965.

[11] T. Sasaki, Y. Yano, M. Nakajima, T. Kawamura, K. Horioka, Evaluation of copper conductivity in warm dense state using exploding wire in water, Laser Part. Beams 24 (2006) 371, Prog. Nucl. Energy 50 (2008) 611.

[12] H. Yoneda, H. Morikami, K. Ueda, R.M. More, Ultrashort-pulse laser ellipsometric pump-probe experiments on gold targets, Phys. Rev. Lett. 91 (2003) 075004.

[13] S.H. Glenzer, G. Gregori, F.J. Rogers, D.H. froula, S.W. Pollaine, R.S. Wallace, X-ray scattering from solid density plasmas, Phys. Plasma. 10 (2003) 2433.

[14] S.H. Glenzer, O.L. Landen, P. Neumayer, R.W. Lee, K. Widmann, et al., Observations of plasmons in warm dense matter, Phys. Rev. Lett. 98 (2007) 06500.

[15] D.H.H. Hoffmanna, A. Blazevic, S. Korostiy, P. Ni, S.A. Pikuz, et al., Inertial fusion energy issues of intense heavy ion and laser beams interacting with ionized matter studied at GSI-Darmstadt, Nucl. Instrum. Meth. A 577 (2007) 8-13.

[16] B.G. Logan, F.M. Bieniosek, C.M. Celata, J. Coleman, W. Greenway, et al., Recent US advances in ion-beam-driven high energy density physics and heavy ion fusion, Nucl. Instrum. Meth. A 577 (2007) 1-7.

[17] S. Kawataa, K. Horiokab, M. Murakamic, Y. Ogurib, J. Hasegawab, et al., Studies on heavy ion fusion and high energy density physics in Japan, Nucl. Instrum. Meth. A 577 (2007) 21-29.

[18] W.F. Henning, The future GSI facility, Nucl. Instrum. Meth. B 214 (2004) 211.

[19] B.Yu. Sharkov, Overview of Russian heavy-ion inertial fusion energy program, Nucl. Instrum. Meth. A 577 (2007) 14-20.

[20] M. Roth, T.E. Cowan, M.H. Key, S.P. Hatchett, C. Brown, et al., Fast ignition by intense laser-accelerated proton beams, Phys. Rev. Lett. 86 (2001) 436.

[21] H. Qin, R.C. Davidson, B.G. Logan, Centroid and envelope dynamics of high-intensity charged-particle beams in an external focusing lattice and oscillating wobbler, Phys. Rev. Lett. 104 (2010) 254801.

[22] N.A. Tahir, Th. St€ohlker, A. Shutov, I.V. Lomonosov, V.E. Fortov, et al., Ultrahigh compression of water using intense heavy ion beams: laboratory planetary physics, N. J. Phys. 12 (2010) 073022.

[23] F. Genco, A. Hassanein, Particle-in-cell methods in predicting materials behavior during high power deposition, Laser Part. Beams 32 (2014) 217.

[24] Y.T. Zhao, Z.H. Hu, R. Cheng, Y.Y. Wang, H.B. Peng, et al., Trends in heavy ion interaction with plasma, Laser Part. Beams 30 (2012) 679-706.

[25] X.W. Ma, W.Q. Wen, S.F. Zhang, D.Y. Yu, R. Cheng, et al., HIAF: New opportunities for atomic physics with highly charged heavy ions, Nucl. Instr. Meth. B 408 (2017) 169.

[26] J.C. Yang, J.W. Xia, G.Q. Xiao, H.S. Xu, H.W. Zhao, et al., High intensity heavy ion accelerator facility (HIAF) in China, Nucl. Instrum. Meth. B 317 (2013) 263.

[27] N.A. Tahira, A. Adoninb, C. Deutschc, V.E. Fortovd, N. Grandjouane, et al., Studies of heavy ion-induced high-energy density states in matter at the GSI Darmstadt SIS-18 and future FAIR facility, Nucl. Inst. Meth. Phys .Res. A 544 (2005) 16-26.

[28] V.E. Fortov, B. Goel, C.-D. Munz, A.L. Ni, A. Shutov, et al., Numerical simulation of nonstationary fronts and interfaces by the Godunov method in moving grids, Nucl. Sci. Eng. 123 (1996) 169.

[29] L.N. Sheng, Y.T. Zhao, G.J. Yang, T. Wei, X.G. Jiang, et al., Heavy-ion radiography facility at the institute of modern physics, Laser Part. Beams 32 (2014) 651.

[30] N.S.P. King, E. Ables, Ken Adams, K.R. Alrick, J.F. Amann, An 800- MeV proton radiography facility for dynamic experiments, Nucl. Instrum. Meth. A 424 (1999) 84-91.

[31] D. Varentsov, O. Antonov, A. Bakhmutova, A. Bogdanov, C.R. Danly, et al., Commissioning of the PRIOR Prototype, GSI Scientific Report, APPA-MML-PP-02, 2014, pp. 275-276.

[32] C.K. Li, F.H. S eguin, J.R. Rygg, J.A. Frenje, M. Manuel, et al., Monoenergetic- proton-radiography measurements of implosion dynamics in direct-drive inertial-confinement fusion, Phys. Rev. Lett. 100 (2008) 225001.

[33] F.E. Merrill, Imaging with penetrating radiation for the study of small dynamic physical processes, Laser Part. Beams 33 (2015) 425-431.

[34] F.E. Merrill, E. Campos, C. Espinoza, G. Hogan, B. Hollander, et al., Magnifying lenses for 800 MeV proton radiography, Rev. Sci. Instrum. 82 (2011) 103709.

[35] D. Varentsov, O. Antonov, A. Bakhmutova, C.W. Barnes, A. Bogdanov, et al., Commissioning of the PRIOR proton microscope, Rev. Sci. Instrum. 87 (2016), 023303/1-023303/8.

[36] A.V. Kantsyrev, A.A. Golubev, V. Bogdanov, V.S. Demidov, E.V. Demidova, et al., TWAC-ITEP proton microscopy facility, Instrum. Exp. Tech. 57 (2014) 1-10.

[37] Yu. M. Antipov, A.G. Afonin, A.V. Vasilevskii, I.A. Gusev, V.I. Demyanchuk, et al., A radiographic facility for the 70 GeV proton accelerator of the institute for high energy physics, Instrum. Exp. Tech. 53 (2010) 319-326.

[38] F. Merrill, F. Harmon, A. Hunt, F. Mariam, K. Morley, et al., Electron radiography, Nucl. Instrum. Meth. B 261 (2007) 382-386.

[39] F.E. Merrill, A.A. Golubev, F.G. Mariam, V.I. Turtikov, D. Varentsov, Proton microscopy at FAIR, AIP Conf. Proc. 1195 (2009) 667-670.

[40] D. Varentsov, A. Bogdanov, V.S. Demidov, A.A. Golubev, A. Kantsyrev, et al., First biological images with high-energy proton microscopy, Phys. Med. 29 (2013) 208-213.

[41] Y. Zhao, Z.M. Zhang, W. Gai, Y. Du, S. Cao, et al., High energy electron radiography scheme with high spatial and temporal resolution in three dimension based on a e-LINAC, Laser Part. Beams 34 (2016) 338-342.

[42] Q.T. Zhao, S.C. Cao, M. Liu, X.K. Sheng, Y.R. Wang, et al., High energy electron radiography system design and simulation study of beam angleposition correlation and aperture effect on the images, Nucl. Instrum. Meth. A 832 (2016) 144-151.

[43] P.A. Ni, M.I. Kulish, V. Mintsev, D.N. Nikolaev, V.Ya. Ternovoi, et al., Temperature measurement of warm-dense-matter generated by intense heavy-ion beams, Laser Part. Beams 26 (2008) 583-589.

[44] J.C. Deng, Y.T. Zhao, R. Cheng, X.M. Zhou, H.B. Peng, et al., Investigation on the energy loss in low energy protons interacting with hydrogen plasma, Acta Phys. Sin. 64 (2015) 145202.

[45] A.B. Zylstra, J.A. Frenje, P.E. Grabowski, C.K. Li, G.W. Collins, et al., Measurement of charged-particle stopping in warm dense plasma, Phys. Rev. Lett. 114 (2015) 215002.

[46] D. Gericke, M. Schlanges, Beam-plasma coupling effects on the stopping power of dense plasmas, Phys. Rev. E 60 (1999) 904.

[47] G. Zwicknagel, C. Toepffer, P.-G. Reinhard, Stopping power in highly correlated plasmas, Phys. Rep. 309 (1999) 117.

[48] D. Varentsov, Energy Loss Dynamics of Intense Heavy Ion Beams Interacting with Dense Matter, Ph.D. thesis, Technische Universit€at Darmstadt, 2002.

[49] Y. Lei, Y.T. Zhao, R. Cheng, X.M. Zhou, Y.B. Sun, et al., Fluorescence emission from CsI(Tl) crystal induced by high-energy carbon ions, Opt. Mater. 35 (2013) 1179-1183.

Rui Cheng, Yu Lei, Xianming Zhou, Yuyu Wang, Yanhong Chen, Yongtao Zhao, Jieru Ren, Lina Sheng, Jiancheng Yang, Zimin Zhang, Yingchao Du, Wei Gai, Xinwen Ma, Guoqing Xiao. Warm dense matter research at HIAF[J]. Matter and Radiation at Extremes, 2018, 3(2): 85.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!