Photonics Research, 2016, 4 (4): 04000146, Published Online: Sep. 29, 2016  

Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials Download: 1456次

Author Affiliations
Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Science, P.O. Box 603, Beijing 100190, China
Copy Citation Text

Ximin Tian, Zhi-Yuan Li. Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials[J]. Photonics Research, 2016, 4(4): 04000146.

References

[1] N. Landy, S. Sajuyigbe, J. Mock, D. Smith, W. Padilla. Perfect metamaterial absorber. Phys. Rev. Lett., 2008, 100: 207402.

[2] W. Li, J. Valentine. Metamaterial perfect absorber based hot electron photodetection. Nano Lett., 2014, 14: 3510-3514.

[3] H. A. Atwater, A. Polman. Plasmonics for improved photovoltaic devices. Nat. Mater., 2010, 9: 205-213.

[4] Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, S. He. Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photon. Rev., 2014, 8: 495-520.

[5] X. Lu, R. Wan, T. Zhang. Metal-dielectric-metal based narrow band absorber for sensing applications. Opt. Express, 2015, 23: 29842-29847.

[6] Y. Li, B. An, S. Jiang, J. Gao, Y. Chen, S. Pan. Plasmonic induced triple-band absorber for sensor application. Opt. Express, 2015, 23: 17607-17612.

[7] K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, J. Zhou. A large‐area, mushroom‐capped plasmonic perfect absorber: refractive index sensing and Fabry-Perot cavity mechanism. Adv. Opt. Mater., 2015, 3: 1779-1786.

[8] D. R. Smith, J. B. Pendry, M. C. Wiltshire. Metamaterials and negative refractive index. Science, 2004, 305: 788-792.

[9] V. M. Shalaev. Optical negative-index metamaterials. Nat. photonics, 2007, 1: 41-48.

[10] N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen. Three-dimensional photonic metamaterials at optical frequencies. Nat. Mater., 2008, 7: 31-37.

[11] N. Liu, H. Liu, S. Zhu, H. Giessen. Stereometamaterials. Nat. Photonics, 2009, 3: 157-162.

[12] E. Plum, V. Fedotov, P. Kuo, D. Tsai, N. Zheludev. Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots. Opt. Express, 2009, 17: 8548-8551.

[13] T. Cao, C.-W. Wei, R. E. Simpson, L. Zhang, M. J. Cryan. Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies. Sci. Rep., 2014, 4: 3955.

[14] X.-J. He, Y. Wang, J. Wang, T. Gui, Q. Wu. Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle. Prog. Electromagn. Res., 2011, 115: 381-397.

[15] H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, R. Averitt. A dual band terahertz metamaterial absorber. J. Phys. D, 2010, 43: 225102.

[16] Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, D. R. Cumming. A terahertz polarization insensitive dual band metamaterial absorber. Opt. Lett., 2011, 36: 945-947.

[17] J. W. Park, P. Van Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, Y. Lee. Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt. Express, 2013, 21: 9691-9702.

[18] S. Li, J. Gao, X. Cao, Z. Zhang, Y. Zheng, C. Zhang. Multiband and broadband polarization-insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial. Opt. Express, 2015, 23: 3523-3533.

[19] Y. Cheng, Y. Nie, R. Gong. A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films. Opt. Laser Technol., 2013, 48: 415-421.

[20] Y. Q. Ye, Y. Jin, S. He. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. J. Opt. Soc. Am B, 2010, 27: 498-504.

[21] Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N. X. Fang. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett., 2012, 12: 1443-1447.

[22] J. Grant, Y. Ma, S. Saha, A. Khalid, D. R. Cumming. Polarization insensitive, broadband terahertz metamaterial absorber. Opt. Lett., 2011, 36: 3476-3478.

[23] X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett., 2011, 107: 045901.

[24] HuH.JiD.ZengX.LiuK.GanQ., “Rainbow trapping in hyperbolic metamaterial waveguide,” in CLEO: QELS_Fundamental Science (2013), paper QTu2A. 4.

[25] H.-M. Lee, J.-C. Wu. Temperature controlled perfect absorber based on metal-superconductor-metal square array. IEEE Trans. Magn., 2012, 48: 4243-4246.

[26] D. Loke, T. Lee, W. Wang, L. Shi, R. Zhao, Y. Yeo, T. Chong, S. Elliott. Breaking the speed limits of phase-change memory. Science, 2012, 336: 1566-1569.

[27] A. Redaelli, A. Pirovano, A. Benvenuti, A. Lacaita. Threshold switching and phase transition numerical models for phase change memory simulations. J. Appl. Phys., 2008, 103: 111101.

[28] V. Weidenhof, I. Friedrich, S. Ziegler, M. Wuttig. Laser induced crystallization of amorphous Ge2Sb2Te5 films. J. Appl. Phys., 2001, 89: 3168-3176.

[29] T. Cao, C. Wei, R. E. Simpson, L. Zhang, M. J. Cryan. Rapid phase transition of a phase-change metamaterial perfect absorber. Opt. Mater. Express, 2013, 3: 1101-1110.

[30] K. Makino, J. Tominaga, M. Hase. Ultrafast optical manipulation of atomic arrangements in chalcogenide alloy memory materials. Opt. Express, 2011, 19: 1260-1270.

[31] G. Dayal, S. A. Ramakrishna. Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks. J. Opt., 2013, 15: 055106.

[32] J. Van de Groep, A. Polman. Designing dielectric resonators on substrates: combining magnetic and electric resonances. Opt. Express, 2013, 21: 26285-26302.

[33] L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, C. Fumeaux. Efficiency and scalability of dielectric resonator antennas at optical frequencies. IEEE Photon. J., 2014, 6: 1-7.

[34] T. Cao, L. Zhang, R. E. Simpson, M. J. Cryan. Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial. J. Opt. Soc. Am. B, 2013, 30: 1580-1585.

[35] PalikE. D., Handbook of Optical Constants of Solids (Academic, 1998).

[36] LeeB.-S.BishopS. G., “Optical and electrical properties of phase change materials,” in Phase Change Materials (Springer, 2009), pp. 175198.

[37] S. Jahani, Z. Jacob. All-dielectric metamaterials. Nat. Nanotechnol., 2016, 11: 23-36.

[38] Y. Chen, T. Kao, B. Ng, X. Li, X. Luo, B. Luk’yanchuk, S. Maier, M. Hong. Hybrid phase-change plasmonic crystals for active tuning of lattice resonances. Opt. Express, 2013, 21: 13691-13698.

[39] X. Chen, Y. Chen, M. Yan, M. Qiu. Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano, 2012, 6: 2550-2557.

[40] B. Lee, Z. Zhang. Design and fabrication of planar multilayer structures with coherent thermal emission characteristics. J. Appl. Phys., 2006, 100: 063529.

[41] W. Zhou, K. Li, C. Song, P. Hao, M. Chi, M. Yu, Y. Wu. Polarization-independent and omnidirectional nearly perfect absorber with ultra-thin 2D subwavelength metal grating in the visible region. Opt. Express, 2015, 23: A413-A418.

[42] G. Chen, P. Hui. Thermal conductivities of evaporated gold films on silicon and glass. Appl. Phys. Lett., 1999, 74: 2942-2944.

[43] M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, T. Baba. Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon. Microelectron. Eng., 2007, 84: 1792-1796.

Ximin Tian, Zhi-Yuan Li. Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials[J]. Photonics Research, 2016, 4(4): 04000146.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!