强激光与粒子束, 2020, 32 (5): 052001, 网络出版: 2020-04-24  

磁化套筒惯性聚变研究进展

Research progress of Magnetized Liner Inertial Fusion
作者单位
中国工程物理研究院 流体物理研究所,四川 绵阳 621900
引用该论文

赵海龙, 肖波, 王刚华, 王强. 磁化套筒惯性聚变研究进展[J]. 强激光与粒子束, 2020, 32(5): 052001.

Hailong Zhao, Bo Xiao, Ganghua Wang, Qiang Wang. Research progress of Magnetized Liner Inertial Fusion[J]. High Power Laser and Particle Beams, 2020, 32(5): 052001.

参考文献

[1] Aymar R. The ITER project[J]. IEEE Trans Plasma Science, 1997, 6: 1187.

[2] Shimomura Y, Spears W. Review of the ITER project[J]. IEEE Trans Plasma Science, 2004, 14: 1369.

[3] Huang Chuanjun, Li Laifeng. Magnetic confinement fusion: A brief review[J]. Front Energy, 2018, 12: 305.

[4] Hurricane O A, Springer P T, Patel P K, et al. Approaching a burning plasma on the NIF[J]. Phys Plasmas, 2019, 26: 052704.

[5] McCrory R L, Meyerhofer D D, Betti R, et al. Progress in direct-drive inertial confinement fusion[J]. Phys Plasmas, 2008, 15: 055503.

[6] Mordecai D R, Meyerhofer1 D D, Betti R, et al. The physics issues that determine inertial confinement fusion target gain and driver requirements: A tutorial[J]. Phys Plasmas, 1999, 6: 1690.

[7] Freidberg J. 等离子体物理与聚变能[M]. 北京: 科学出版社, 2010: 5051.Freidberg J. Plasma physics fusion energy. Beijing: Science Press, 2010: 5051

[8] Thio Y C F, Panarella E, Knupp C E, et al. Magized target fusion in a spheroidal geometry with stoff drivers[C]The 2nd Conference on Current Trends in International Fusion Research. 1999: 113.

[9] Parks P B. On the efficacy of imploding plasma liners for magnetized fusion target compression[J]. Phys Plasmas, 2008, 15: 062506.

[10] Cassibry J T, Stanic M, Hsu S C, et al. Tendency of spherically imploding plasma liners formed by merging plasma jets to evolve toward spherical symmetry[J]. Phys Plasmas, 2012, 19: 052702.

[11] Schoenberg K F, Siemon R E. Magized target fusion: A proofofprinciple research proposal[R].LAUR982413

[12] Kirkpatrick R C. Magized target fusion(MTF) principle status international collabation[C]Latin America Wkshop on Plasma Physics. 1998.

[13] Lindemuth I R, Kirkpatrick R C. Parameter space for magnetized fuel targets in inertial confinement fusion[J]. Nucl Fusion, 1983, 23: 263.

[14] Perkins L J, M Ho D D, Logan B G, et al. The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion[J]. Phys Plasmas, 2017, 24: 062708.

[15] Slutz S A, Herrmann M C, Vesey R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Phys Plasmas, 2010, 17: 056303.

[16] Harvey-Thompson A, Geissel M, Jennings C, et al. Constraining preheat energy deposition in MagLIF experiments with multi-frame shadowgraphy[J]. Phys Plasmas, 2019, 26: 032707.

[17] Paradela J, Garcia-Rubio F, Sanz J. Alpha heating enhancement in MagLIF targets: A simple analytic model[J]. Phys Plasmas, 2019, 26: 012705.

[18] Perkins L J, Logan B G, Zimmerman G B, et al. Two-dimensional simulation of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields[J]. Phys Plasmas, 2013, 20: 072708.

[19] Slutz S A, Roger A V. High-gain magnetized inertial fusion[J]. Phys Rev Lett, 2012, 108: 025003.

[20] Sefkow A B, Slutz S A, Koning J M, et al. Design of magnetized liner inertial fusion experiments using the Z facility[J]. Phys Plasmas, 2014, 21: 072711.

[21] Slutz S A. Magized liner inertial fusion(MagLIF): The promise challenges[C]MagLIF Wkshop. 2012.

[22] Gomez M R, Slutz S A, Sefkow A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion[J]. Phys Rev Lett, 2014, 113: 155003.

[23] Knapp P F, Gomez M R , Hansen S B ,et al. Origins and effects of mix on magnetized liner inertial fusion target performance[J]. Phys Plasmas, 2019, 26: 012704.

[24] Pecover J D, Chittenden J P. Instability growth for magnetized liner inertial fusion seeded by electro-thermal, electro-choric, and material strength effects[J]. Phys Plasmas, 2015, 22: 102701.

[25] Appelbe B, Pecover J, Chittenden J, et al. The effects of magnetic field topology on secondary neutron spectra in Magnetized Liner Inertial Fusion[J]. High Energy Density Physics, 2017, 22: 27.

[26] Knapp C E, Kirkpatrick R C. Possible energy gain for a plasma-liner-driven magneto-inertial fusion concept[J]. Phys Plasmas, 2014, 21: 070701.

[27] Marinak M M, Kerbel G D, Gentile N A, et al. Three-dimensional HYDRA simulations of National Ignition Facility targets[J]. Phys Plasmas, 2001, 8: 2275.

[28] Ramis R, Meyer-ter-Vehn J. MULTI-IFE—A one-dimensional computer code for Inertial Fusion Energy (IFE) targets simulations[J]. Comput Phys Commun, 2016, 203: 226.

[29] Ramis R. 3D simulations of thin shell capsule implosions[C]The 2nd International Conference on Matter Radiation at Extremes. 2017.

[30] Wu Fuyuan. Running MULTIIFE stalone in WindowsLinux operating system[C]Local Symposium. 2017.

[31] Chen Shijia. Numerical simulation of MagLIF by MULTIIFE[C]Local Symposium. 2017.

[32] McBride R D, Slutz S A. A semi-analytic model of magnetized liner inertial fusion[J]. Phys Plasmas, 2015, 22: 052708.

[33] McBride R. D, Slutz S A, Vesey R A, et al. Exploring magnetized liner inertial fusion with a semi-analytic model[J]. Phys Plasmas, 2016, 23: 012705.

[34] Ryutov D D, Cuneo M E, Herrman M C, et al. Simulating the magnetized liner inertial fusion plasma confinement with smaller-scale experiments[J]. Phys Plasmas, 2012, 19: 062706.

[35] Velikovich A L, Giuliani J L, Zalesak S T. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma[J]. Phys Plasmas, 2015, 22: 042702.

[36] Lindemuth I R. The ignition design space of magnetized target fusion[J]. Phys Plasmas, 2015, 22: 122712.

[37] Garcia-Rubio F, Sanz J. Mass ablation and magnetic flux losses through a magnetized plasma-liner wall interface[J]. Phys Plasmas, 2017, 24: 072710.

[38] Garcia-Rubio F, Sanz J. Mass diffusion and liner material effect in a MagLIF fusion-like plasma[J]. Phys Plasmas, 2018, 25: 082112.

[39] Garcia-Rubio F, Sanz J, Betti R. Magnetic flux conservation in an imploding plasma[J]. Phys Rev E, 2018, 97: 011201.

[40] Sinars D B, Slutz S A, Herrmann M C, et al. Measurement of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid Al tubes driven by the 20-MA, 100-ns Z facility[J]. Phys Rev Lett, 2010, 105: 185001.

[41] Peterson K J, Yu E P, Sinars D B, et al. Herrmann simulations of electro-thermal instability growth in solid aluminum rods[J]. Phys Plasmas, 2013, 20: 056305.

[42] Peterson K J, Awe T J, Yu E P, et al. Electro-thermal instability mitigation by using thick dielectric coatings on magnetically imploded conductors[J]. Phys Rev Lett, 2014, 112: 135002.

[43] Awe T J, McBride R D, Jennings C A, et al. Observations of modified three-dimensional instability structure for imploding Z-pinch liners that are premagnetized with an axial field[J]. Phys Rev Lett, 2013, 111: 235005.

[44] Sefkow A B. On the helical instability efficient stagnation pressure production in thermonuclear magized inertial fusion[C]58th Annual Meeting of the Division of Plasma Physics of the American Physical Society. 2016.

[45] Seyler C E, Martin M R, Hamlin N D. Helical instability in MagLIF due to axial flux compression by low-density plasma[J]. Phys Plasmas, 2018, 25: 062711.

[46] Peterson K J. Dramatic reduction of magoRayleigh Tayl instability growth in magically driven Zpinch liners [C]20th International Conference on Plasma Science. 2015.

[47] Basko M M, Kemp A J, Meyer-ter-Vehn J. Ignition conditions for magnetized target fusion in cylindrical geometry[J]. Nucl Fusion, 2000, 40: 59.

[48] Gomez M R, Slutz S A, Sefkow A B, et al. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments[J]. Phys Plasmas, 2015, 22: 056306.

[49] Barnak D H. Laser-driven magnetized liner inertial fusion on OMEGA[J]. Phys Plasmas, 2017, 24: 056310.

[50] Davies J R, Davies J R, Betti R, et al. Laser-driven magnetized liner inertial fusion[J]. Phys Plasmas, 2017, 24: 062701.

[51] Sinars D B. Magized Liner Inertial Fusion (MagLIF) research at Sia National Labaties [C]1st Chinese Pulsed Power Society Wkshop. 2015.

[52] Geissel M. LEH transmission early fuel heating f MagLIF with Zbeamlet [C]45th Anomalous Absption Conference. 2015.

[53] Gomez M. Recent progress in Magized Liner Inertial Fusion (MagLIF) experiments[C]20th IEEE Pulsed Power Conference. 2015.

[54] Geissel M, Awe T J, Bliss D E, et al. Nonlinear laserplasma interaction in magized liner inertial fusion[C]Proc of SPIE. 2016: 97310O.

[55] Geissel M, Harvey-Thompson A J, Awe T J, et al. Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets[J]. Phys Plasmas, 2018, 25: 022706.

[56] Davies J R, Bahr R E, Barnak D H, et al. Laser entrance window transmission and reflection measurements for preheating in magnetized liner inertial fusion[J]. Phys Plasmas, 2018, 25: 062704.

[57] Slutz S A. On the feasibility of ged particlebeam preheat f MagLIF[R]. S 20151515R.

[58] Hansen S. Investigating inertial confinement fusion target fuel conditions through X-ray spectroscopy[J]. Phys Plasmas, 2012, 19: 056312.

[59] Hansen S. Transpt in diagnostics of Magized Liner Inertial Fusion(MagLIF) experiments[C]Radiation High Energy Density Physics Wkshop. 2015.

[60] Rochau G A. MagLIF the potential of highspeed single lineofsight detection f ICF[R]. S 20154415PE.

[61] Hansen S B, Sefkow A B, Nagayama T N, et al. Diagnosing laser-preheated magnetized plasmas relevant to magnetized liner inertial fusion[J]. Phys Plasmas, 2015, 22: 122708.

[62] Patrick K. Magized Liner Inertial Fusion (MagLIF) experiments on Z: Spectroscopy what’s been learned about stagnation [R]. S 20155078PE.

[63] Schmit P F, Knapp P F, Hansen S B, et al. Understanding fuel magnetization and mix using secondary nuclear reactions in magneto-inertial fusion[J]. Phys Rev Lett, 2014, 113: 155004.

[64] Knapp P F, Schmit P F, Hansen S B, et al. Effects of magnetization on fusion product trapping and secondary neutron spectra[J]. Phys Plasmas, 2015, 22: 056312.

[65] Fooks J A, Carlson L C, Fitzsimmons P, et al. Evolution of Magnetized Liner Inertial Fusion(MagLIF) targets[J]. Fusion Sci Technol, 2018, 73: 1.

[66] Awe T J, Shelton K P, Sefkow A B, et al. Development of a cryogenically cooled platform for the Magnetized Liner Inertial Fusion(MagLIF) program[J]. Rev Sci Instrum, 2017, 88: 093515.

[67] Lamppa D C. The path to 30 tesla: field coil designs f the Magized Liner Inertial Fusion (MagLIF) concept at Sia’s Z facility[C]. S 20154163C.

[68] Gourdain P A, Adams M B, Davies J R, et al. Axial magnetic field injection in magnetized liner inertial fusion[J]. Phys Plasmas, 2017, 24: 102712.

[69] Shipley G A, Awe T J, Hutsel B T, et al. Megagauss-level magnetic field production in cm-scale auto-magnetizing helical liners pulsed to 500 kA in 125 ns[J]. Phys Plasmas, 2018, 25: 052703.

[70] Slutz S A, Stygar W A, Gomez M R, et al. Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators[J]. Phys Plasmas, 2016, 23: 022702.

[71] Slutz S A. Scaling of magnetized inertial fusion with drive current rise-time[J]. Phys Plasmas, 2018, 25: 082707.

赵海龙, 肖波, 王刚华, 王强. 磁化套筒惯性聚变研究进展[J]. 强激光与粒子束, 2020, 32(5): 052001. Hailong Zhao, Bo Xiao, Ganghua Wang, Qiang Wang. Research progress of Magnetized Liner Inertial Fusion[J]. High Power Laser and Particle Beams, 2020, 32(5): 052001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!