Advanced Photonics, 2019, 1 (4): 046002, Published Online: Aug. 23, 2019  

Synchronization and temporal nonreciprocity of optical microresonators via spontaneous symmetry breaking Download: 696次

Author Affiliations
1 Peking University, State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Beijing, China
2 Nano-optoelectronics Frontier Center of the Ministry of Education, Collaborative Innovation Center of Quantum Matter, Beijing, China
3 Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, China
4 Beijing Academy of Quantum Information Sciences, Beijing, China
5 National University of Singapore, Department of Electrical and Computer Engineering, Singapore, Singapore
6 Shanxi University, Institute of Laser Spectroscopy, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Taiyuan, China
Copy Citation Text

Da Xu, Zi-Zhao Han, Yu-Kun Lu, Qihuang Gong, Cheng-Wei Qiu, Gang Chen, Yun-Feng Xiao. Synchronization and temporal nonreciprocity of optical microresonators via spontaneous symmetry breaking[J]. Advanced Photonics, 2019, 1(4): 046002.

References

[1] B. van der Pol, J. van der Mark. LXXII. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. London Edinburgh Dublin Philos. Mag. J. Sci., 2009, 6(38): 763-775.

[2] R. FitzHugh. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J., 1961, 1(6): 445-466.

[3] J. Buck, E. Buck. Mechanism of rhythmic synchronous flashing of fireflies: fireflies of Southeast Asia may use anticipatory time-measuring in synchronizing their flashing. Science, 1968, 159(3821): 1319-1327.

[4] C.Huygens, Oeuvres Complètes, Vol. 7, M. Nijhoff, Leiden (1897).

[5] H. M. Oliveira, L. V. Melo. Huygens synchronization of two clocks. Sci. Rep., 2015, 5: 11548.

[6] J.Kurths, A.Pikovsky and M.Rosenblum, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, New York (2001).

[7] S.Bregni, Synchronization of Digital Telecommunications Networks, Vol. 27, Wiley, New York (2002).

[8] M. Bagheri, et al.. Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation. Nat. Nanotechnol., 2011, 6(11): 726-732.

[9] I. Mahboob, H. Yamaguchi. Bit storage and bit flip operations in an electromechanical oscillator. Nat. Nanotechnol., 2008, 3(5): 275-279.

[10] F. C. Hoppensteadt, E. M. Izhikevich. Synchronization of MEMS resonators and mechanical neurocomputing. IEEE Trans. Circuits Syst. I, 2001, 48(2): 133-138.

[11] H.Nijmeijer and A.Rodriguez-Angeles, Synchronization of Mechanical Systems, Vol. 46, World Scientific, Singapore (2003).

[12] S.-B. Shim, M. Imboden, P. Mohanty. Synchronized oscillation in coupled nanomechanical oscillators. Science, 2007, 316(5821): 95-99.

[13] G. Heinrich, et al.. Collective dynamics in optomechanical arrays. Phys. Rev. Lett., 2011, 107: 043603.

[14] C. A. Holmes, C. P. Meaney, G. J. Milburn. Synchronization of many nanomechanical resonators coupled via a common cavity field. Phys. Rev. E, 2012, 85: 066203.

[15] M. Zhang, et al.. Synchronization of micromechanical oscillators using light. Phys. Rev. Lett., 2012, 109(23): 233906.

[16] M. Zhang, et al.. Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light. Phys. Rev. Lett., 2015, 115(16): 163902.

[17] V. Peano, et al.. Topological phases of sound and light. Phys. Rev. X, 2015, 5(3): 031011.

[18] S. Y. Shah, et al.. Master-slave locking of optomechanical oscillators over a long distance. Phys. Rev. Lett., 2015, 114: 113602.

[19] M. Bagheri, et al.. Photonic cavity synchronization of nanomechanical oscillators. Phys. Rev. Lett., 2013, 111(21): 213902.

[20] T. Li, et al.. Long-distance synchronization of unidirectionally cascaded optomechanical systems. Opt. Express, 2016, 24(11): 12336-12348.

[21] E. Gil-Santos, et al.. Light-mediated cascaded locking of multiple nano-optomechanical oscillators. Phys. Rev. Lett., 2017, 118: 063605.

[22] M. Cross, et al.. Synchronization by nonlinear frequency pulling. Phys. Rev. Lett., 2004, 93(22): 224101.

[23] D. K. Agrawal, J. Woodhouse, A. A. Seshia. Observation of locked phase dynamics and enhanced frequency stability in synchronized micromechanical oscillators. Phys. Rev. Lett., 2013, 111: 084101.

[24] S. Walter, A. Nunnenkamp, C. Bruder. Quantum synchronization of a driven self-sustained oscillator. Phys. Rev. Lett., 2014, 112(9): 094102.

[25] L. M. Pecora, et al.. Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nat. Commun., 2014, 5: 4079.

[26] M. H. Matheny, et al.. Phase synchronization of two anharmonic nanomechanical oscillators. Phys. Rev. Lett., 2014, 112(1): 014101.

[27] N. Lörch, et al.. Genuine quantum signatures in synchronization of anharmonic self-oscillators. Phys. Rev. Lett., 2016, 117(7): 073601.

[28] E. Kuramochi, et al.. Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip. Nat. Photonics, 2014, 8(6): 474-481.

[29] M. Zhang, et al.. Electronically programmable photonic molecule. Nat. Photonics, 2019, 13(1): 36-40.

[30] Y.-C. Liu, et al.. Coherent polariton dynamics in coupled highly dissipative cavities. Phys. Rev. Lett., 2014, 112(21): 213602.

[31] M.-J. Hwang, M. B. Plenio. Quantum phase transition in the finite Jaynes-Cummings lattice systems. Phys. Rev. Lett., 2016, 117(12): 123602.

[32] J. Tangpanitanon, et al.. Topological pumping of photons in nonlinear resonator arrays. Phys. Rev. Lett., 2016, 117(21): 213603.

[33] M. Ludwig, F. Marquardt. Quantum many-body dynamics in optomechanical arrays. Phys. Rev. Lett., 2013, 111(7): 073603.

[34] J. K. Jang, et al.. Synchronization of coupled optical microresonators. Nat. Photonics, 2018, 12(11): 688-693.

[35] Q.-F. Yang, et al.. Counter-propagating solitons in microresonators. Nat. Photonics, 2017, 11(9): 560-564.

[36] C. Jirauschek, F. X. Kärtner. Gaussian pulse dynamics in gain media with Kerr nonlinearity. J. Opt. Soc. Am. B, 2006, 23(9): 1776-1784.

[37] D. Liu, et al.. Symmetry, stability, and computation of degenerate lasing modes. Phys. Rev. A, 2017, 95(2): 023835.

[38] T. E. Lee, H. Sadeghpour. Quantum synchronization of quantum van der Pol oscillators with trapped ions. Phys. Rev. Lett., 2013, 111(23): 234101.

[39] D. F.Walls and G. J.Milburn, Quantum Optics, Springer Science & Business Media, Berlin (2007).

[40] L. Gilles, P. Knight. Two-photon absorption and nonclassical states of light. Phys. Rev. A, 1993, 48(2): 1582-1593.

[41] S. Wieczorek, W. W. Chow. Bifurcations and interacting modes in coupled lasers: a strong-coupling theory. Phys. Rev. A, 2004, 69: 033811.

[42] S. Wieczorek, W. W. Chow. Chaos in practically isolated microcavity lasers. Phys. Rev. Lett., 2004, 92(21): 213901.

[43] H.Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations, Springer, Berlin (1999).

[44] A. Mari, et al.. Measures of quantum synchronization in continuous variable systems. Phys. Rev. Lett., 2013, 111(10): 103605.

[45] A. M. Lyapunov. The general problem of the stability of motion. Int. J. Control, 1992, 55(3): 531-534.

[46] J. E.Marsden and M.McCracken, The Hopf Bifurcation and Its Applications, Vol. 19, Springer Science & Business Media, Heildelberg (2012).

[47] N. Berglund. Dynamic bifurcations: hysteresis, scaling laws and feedback control. Prog. Theor. Phys. Suppl., 2000, 139: 325-336.

[48] K. H. J.Buschow and F. R.Boer, Physics of Magnetism and Magnetic Materials, Vol. 92, Springer, New York (2003).

[49] M. A.Armstrong, Basic Topology, Springer Science & Business Media, Heildelberg (2013).

[50] C.-H. Chen, et al.. All-optical memory based on injection-locking bistability in photonic crystal lasers. Opt. Express, 2011, 19(4): 3387-3395.

[51] C. Ríos, et al.. Integrated all-photonic non-volatile multi-level memory. Nat. Photonics, 2015, 9(11): 725-732.

Da Xu, Zi-Zhao Han, Yu-Kun Lu, Qihuang Gong, Cheng-Wei Qiu, Gang Chen, Yun-Feng Xiao. Synchronization and temporal nonreciprocity of optical microresonators via spontaneous symmetry breaking[J]. Advanced Photonics, 2019, 1(4): 046002.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!