中国激光, 2018, 45 (9): 0911012, 网络出版: 2018-09-08   

基于激光光声光谱超高灵敏度检测SF6分解组分H2S 下载: 1327次

High Sensitive Detection for SF6 Decomposition Component of H2S Based on Laser Photoacoustic Spectroscopy
作者单位
1 大连理工大学光电工程与仪器科学学院, 辽宁 大连 116024
2 中国电力科学研究院高电压研究所, 北京 100192
引用该论文

陈珂, 袁帅, 宫振峰, 于清旭. 基于激光光声光谱超高灵敏度检测SF6分解组分H2S[J]. 中国激光, 2018, 45(9): 0911012.

Chen Ke, Yuan Shuai, Gong Zhenfeng, Yu Qingxu. High Sensitive Detection for SF6 Decomposition Component of H2S Based on Laser Photoacoustic Spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(9): 0911012.

参考文献

[1] Chu F Y. SF6 decomposition in gas-insulated equipment[J]. IEEE Transactions on Electrical Insulation, 1986, 21(5): 693-725.

[2] Tang J, Rao X J, Zeng F P, et al. Influence mechanisms of trace H2O on the generating process of SF6 spark discharge decomposition components[J]. Plasma Chemistry and Plasma Processing, 2017, 37(1): 325-340.

[3] 唐念, 乔胜亚, 李丽, 等. HF和H2S作为气体绝缘组合电器绝缘缺陷诊断特征气体的有效性[J]. 电工技术学报, 2017, 32(19): 202-211.

    Tang N, Qiao S Y, Li L, et al. Validity of HF and H2S as target gases of insulation monitoring in gas insulated switchgear[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 202-211.

[4] 周东平, 刘春意, 曾军, 等. SF6设备气相色谱分析在现场的应用研究[J]. 电力学报, 2009, 24(5): 412-415.

    Zhou D P, Liu C Y, Zeng J, et al. The analysis of SF6 gas chromatography equipment on the spot application and studies[J]. Journal of Electric Power, 2009, 24(5): 412-415.

[5] 余志祥, 续晋江. TDLAS技术用于SF6放电分解物H2S检测的可行性研究[J]. 高压电器, 2014, 50(1): 42-46.

    Yu Z X, Xu J J. Feasibility study on application of TDLAS technology to detection of H2S in SF6 discharge decomposition products[J]. High Voltage Apparatus, 2014, 50(1): 42-46.

[6] Yin X K, Dong L, Wu H P, et al. Highly sensitive SO2 photoacoustic sensor for SF6 decomposition detection using a compact mW-level diode-pumped solid-state laser emitting at 303 nm[J]. Optics Express, 2017, 25(26): 32581-32590.

[7] Cai W, Tang J, Cheng L, et al. Detection of SF6 decomposition components under partial discharge by photoacoustic spectrometry and its temperature characteristic[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(6): 1343-1351.

[8] 陈颖, 高光珍, 蔡廷栋. 基于光声光谱的乙烯探测技术[J]. 中国激光, 2017, 44(5): 0511001.

    Chen Y, Gao G Z, Cai T D. Detection technique of ethylene based on photoacoustic spectroscopy[J]. Chinese Journal of Lasers, 2017, 44(5): 0511001.

[9] 陈珂, 袁帅, 宫振峰, 等. 基于光纤声波传感的超高灵敏度光声光谱微量气体检测[J]. 光学学报, 2018, 38(3): 0328015.

    Chen K, Yuan S, Gong Z F, et al. Ultra-high sensitive photoacoustic spectrometer for trace gas detection based on fiber-optic acoustic sensors[J]. Acta Optica Sinica, 2018, 38(3): 0328015.

[10] 刘善峥, 张望, 于清旭. 基于可调谐掺铒光纤激光器和掺铒光纤放大器的光声光谱气体分析仪[J]. 中国激光, 2009, 36(4): 964-967.

    Liu S Z, Zhang W, Yu Q X. Photoacoustic spectrometer based on the combination of tunable erbium doped fiber laser and erbium doped fiber amplifier[J]. Chinese Journal of Lasers, 2009, 36(4): 964-967.

[11] Wang J, Zhang W, Li L, et al. Breath ammonia detection based on tunable fiber laser photoacoustic spectroscopy[J]. Applied Physics B, 2011, 103(2): 263-269.

[12] Mao X F, Zhou X L, Gong Z F, et al. An all-optical photoacoustic spectrometer for multi-gas analysis[J]. Sensors and Actuators B, 2016, 232: 251-256.

[13] Elia A. Lugarà P M, di Franco C,et al. Photoacoustic techniques for trace gas sensing based on semiconductor laser sources[J]. Sensors, 2009, 9(12): 9616-9628.

[14] MürtzM, HeringP. Online monitoring of exhaled breath using mid-infrared laser spectroscopy[M] ∥Ebrahim-Zadeh M, Sorokina I T. Mid-Infrared Coherent Sources and Applications. [S.l.]: Springer, 2008: 535- 555.

[15] Wu H P, Dong L, Zheng H D, et al. Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582 nm DFB laser[J]. Sensors and Actuators B, 2015, 221: 666-672.

[16] Wu H P, Dong L, Liu X L, et al. Fiber-amplifier-enhanced QEPAS sensor for simultaneous trace gas detection of NH3 and H2S[J]. Sensors, 2015, 15(10): 26743-26755.

[17] Zhang X X, Cheng Z, Li X. Cantilever enhanced photoacoustic spectrometry: quantitative analysis of the trace H2S produced by SF6 decomposition[J]. Infrared Physics & Technology, 2016, 78: 31-39.

[18] 董磊, 马维光, 张雷, 等. 基于脉冲石英增强光声光谱的中红外超高灵敏CO探测[J]. 光学学报, 2014, 34(1): 0130002.

    Dong L, Ma W G, Zhang L, et al. Mid-IR ultra-sensitive CO detection based on pulsed quartz enhanced photoacoustic spectroscopy[J]. Acta Optica Sinica, 2014, 34(1): 0130002.

[19] Dumitras D C, Dutu D C, Matei C, et al. Laser photoacoustic spectroscopy: principles, instrumentation, and characterization[J]. Journal of Optoelectronics and Advanced Materials, 2007, 9(12): 3655-37701.

[20] 陈珂, 刘学聪, 罗先卫, 等. 32通道光纤阵列式高灵敏飞秒激光光谱分析仪[J]. 光电子·激光, 2015, 26(1): 116-121.

    Chen K, Liu X C, Luo X W, et al. 32-channel fiber array input femtosecond laser optical spectrum analyzer with high sensitivity[J]. Journal of Optoelectronics·Laser, 2015, 26(1): 116-121.

[21] Chen K, Zhou X L, Peng W, et al. OFDR based distributed temperature sensor using the three-channel simultaneous radio-frequency lock-in technique[J]. Photonic Sensors, 2015, 5(3): 217-223.

陈珂, 袁帅, 宫振峰, 于清旭. 基于激光光声光谱超高灵敏度检测SF6分解组分H2S[J]. 中国激光, 2018, 45(9): 0911012. Chen Ke, Yuan Shuai, Gong Zhenfeng, Yu Qingxu. High Sensitive Detection for SF6 Decomposition Component of H2S Based on Laser Photoacoustic Spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(9): 0911012.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!