Advanced Photonics, 2021, 3 (2): 026003, Published Online: Apr. 6, 2021   

Time-domain terahertz optoacoustics: manipulable water sensing and dampening Download: 850次

Jiao Li 1†Yixin Yao 1,2,3Liwen Jiang 1,2,3Shuai Li 1Zhihao Yi 1,2,3Xieyu Chen 1,2,3Zhen Tian 1,2,3,*Weili Zhang 4,*
Author Affiliations
1 Tianjin University, School of Precision Instruments and Optoelectronics Engineering, Tianjin, China
2 Tianjin University, Center for Terahertz Waves, Tianjin, China
3 Ministry of Education, Key Laboratory of Optoelectronics Information and Technology, Tianjin, China
4 Oklahoma State University, School of Electrical and Computer Engineering, Stillwater, Oklahoma, United States
Copy Citation Text

Jiao Li, Yixin Yao, Liwen Jiang, Shuai Li, Zhihao Yi, Xieyu Chen, Zhen Tian, Weili Zhang. Time-domain terahertz optoacoustics: manipulable water sensing and dampening[J]. Advanced Photonics, 2021, 3(2): 026003.

References

[1] M. Tonouchi. Cutting-edge terahertz technology. Nat. Photonics, 2007, 1(2): 97-105.

[2] B. Ferguson, X. Zhang. Materials for terahertz science and technology. Nat. Mater., 2002, 1(1): 26-33.

[3] D. Mittleman. Frontiers in terahertz sources and plasmonics. Nat. Photonics, 2013, 7(9): 666-669.

[4] P. Jepsen, D. Cooke, M. Koch. Terahertz spectroscopy and imaging—modern techniques and applications. Laser Photonics Rev., 2011, 5(1): 124-166.

[5] X. Zhang, A. Shkurinov, Y. Zhang. Extreme terahertz science. Nat. Photonics, 2017, 11(1): 16-18.

[6] E. Pickwell, V. P. Wallace. Biomedical applications of terahertz technology. J. Phys. D Appl. Phys., 2006, 39(17): R301-R310.

[7] X. Yang, et al.. Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol., 2016, 34(10): 810-824.

[8] P. H. Siegel. Terahertz technology in biology and medicine. IEEE Trans. Microwave Theory, 2004, 52(10): 2438-2447.

[9] K. A. Niessen, et al.. Protein and RNA dynamical fingerprinting. Nat. Commun., 2019, 10(1): 1026.

[10] H. J. Shin, et al.. Conformational characteristics of beta-glucan in laminarin probed by terahertz spectroscopy. Appl. Phys. Lett., 2009, 94(11): 111911.

[11] S. Funkner, et al.. Watching the low-frequency motions in aqueous salt solutions: the terahertz vibrational signatures of hydrated ions. J. Am. Chem. Soc., 2012, 134(2): 1030-1035.

[12] B. D. Bursulaya, H. J. Kim. Spectroscopic and dielectric properties of liquid water: a molecular dynamics simulation study. J. Chem. Phys., 1998, 109(12): 4911-4919.

[13] J. Xu, K. W. Plaxco, S. J. Allen. Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy. Protein Sci., 2006, 15(5): 1175-1181.

[14] B. Born, et al.. The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin. Faraday Discuss., 2008, 114: 161-173.

[15] B. Born, et al.. Solvation dynamics of model peptides probed by terahertz spectroscopy. Observation of the onset of collective network motions. J. Am. Chem. Soc., 2009, 131(10): 3752-3755.

[16] S. Ebbinghaus, et al.. An extended dynamical hydration shell around proteins. Proc. Natl. Acad. Sci. U. S. A., 2007, 104(52): 20749-20752.

[17] M. C. Bellissent-Funel, et al.. Water determines the structure and dynamics of proteins. Chem. Rev., 2016, 116(13): 7673-7697.

[18] G. Schwaab, F. Sebastiani, M. Havenith. Ion hydration and ion pairing as probed by THz spectroscopy. Angew. Chem. Int. Ed., 2019, 58(10): 3000-3013.

[19] S. J. Kim, et al.. Real-time detection of protein–water dynamics upon protein folding by terahertz absorption spectroscopy. Angew. Chem. Int. Ed., 2008, 47(34): 6486-6489.

[20] D. A. Turton, et al.. Terahertz underdamped vibrational motion governs protein-ligand binding in solution. Nat. Commun., 2014, 5(1): 3999.

[21] A. G. Markelz. Terahertz dielectric sensitivity to biomolecular structure and function. IEEE J. Sel. Top. Quantum, 2008, 14(1): 180-190.

[22] X. Li, et al.. Terahertz absorption of DNA decamer duplex. J. Phys. Chem. A, 2008, 112(47): 12090-12096.

[23] H. B. Liu, et al.. Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy. Biosens. Bioelectron., 2007, 22(6): 1075-1080.

[24] U. Heugen, et al.. Solute-induced retardation of water dynamics probed directly by terahertz spectroscopy. Proc. Natl. Acad. Sci. U. S. A., 2006, 103(33): 12301-12306.

[25] M. Heyden, et al.. Long-range influence of carbohydrates on the solvation dynamics of water-answers from terahertz absorption measurements and molecular modeling simulations. J. Am. Chem. Soc., 2008, 130(17): 5773-5779.

[26] N. Penkov, et al.. Terahertz spectroscopy applied for investigation of water structure. J. Phys. Chem. B, 2015, 119(39): 12664-12670.

[27] H. Chen, et al.. Performance of THz fiber-scanning near-field microscopy to diagnose breast tumors. Opt. Express, 2011, 19(20): 19523-19531.

[28] H. Cheon, et al.. Detection and manipulation of methylation in blood cancer DNA using terahertz radiation. Sci. Rep., 2019, 9(1): 6413.

[29] W. G. Yeo, et al.. Evaluation of cancer tissue morphology via THz spectroscopic imaging: human lung and small intestine malignancies. Infrared Phys. Technol., 2019, 97: 411-416.

[30] M. El-Shenawee, et al.. Cancer detection in excised breast tumors using terahertz imaging and spectroscopy. Biomed. Spectrosc. Imaging, 2019, 8(1-2): 1-9.

[31] Z. Geng, et al.. A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage. Sci. Rep., 2017, 7(1): 16378.

[32] E. Pickwell, et al.. In vivo study of human skin using pulsed terahertz radiation. Phys. Med. Biol., 2004, 49(9): 1595-1607.

[33] P. Tewari, et al.. In vivo terahertz imaging of rat skin burns. J. Biomed. Opt., 2012, 17(4): 040503.

[34] P. C. Ashworth, et al.. Terahertz pulsed spectroscopy of freshly excised human breast cancer. Opt. Express, 2009, 17(15): 12444.

[35] L. Thrane, et al.. Thz reflection spectroscopy of liquid water. Chem. Phy. Lett., 1995, 240(4): 330-333.

[36] T. Arikawa, M. Nagai, K. Tanaka. Characterizing hydration state in solution using terahertz time-domain attenuated total reflection spectroscopy. Chem. Phy. Lett., 2008, 457(1–3): 12-17.

[37] M. A. Brun, et al.. Terahertz imaging applied to cancer diagnosis. Phys. Med. Biol., 2010, 55(16): 4615-4623.

[38] H. A. Hafez, et al.. Intense terahertz radiation and their applications. J. Opt., 2016, 18(9): 093004.

[39] X. Cai, et al.. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat. Nanotechnol., 2014, 9(10): 814-819.

[40] M. Tsubouchi, et al.. Plane photoacoustic wave generation in liquid water using irradiation of terahertz pulses. Sci. Rep., 2020, 10(1): 18537.

[41] S. Yamazaki, et al.. Propagation of THz irradiation energy through aqueous layers: demolition of actin filaments in living cells. Sci. Rep., 2020, 10(1): 9008.

[42] S. L. Chen, et al.. Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite. Nat. Photonics, 2014, 8(7): 537-542.

[43] J. Hebling, et al.. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. J. Opt. Soc. Am. B, 2008, 25(7): B6-B19.

[44] Y. Zhou, et al.. Tutorial on photoacoustic tomography. J. Biomed. Opt., 2016, 21(6): 061007.

[45] ANSI, “American national standard for safe use of lasers,” Laser Institute of America ANSI Z136.1 (2007).

[46] J. Yao, L. V. Wang. Photoacoustic microscopy. Laser Photonics Rev., 2013, 7(5): 758-778.

[47] V. Ntziachristos. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods, 2010, 7(8): 603-614.

[48] L. V.Wang and H. I.Wu, Biomedical Optics Principles and Imaging, Ch. 12, Wiley Press, New Jersey (2009).

[49] L. V. Wang. Tutorial on photoacoustic microscopy and computed tomography. IEEE J. Sel. Top. Quantum, 2008, 14(1): 171-179.

[50] B. E. Treeby, B. T. Cox. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt., 2010, 15(2): 021314.

[51] R. Darros-Barbosa, M. O. Balaban, A. A. Teixeira. Temperature and concentration dependence of density of model liquid foods. Int. J. Food Prop., 2003, 6(2): 195-214.

[52] N. Contreras, et al.. Analysis of the sugar content of fruit juices and drinks using ultrasonic velocity measurements. Int. J. Food Sci. Technol., 1992, 27(5): 515-529.

[53] R.Darros-Barbosa, “High pressure and temperature dependence of thermodynamic properties of model food solutions obtained from in situ ultrasonic measurements,” PhD Thesis, University of Florida, Gainesville, Florida (2003).

[54] C Huang, et al.. Photoacoustic computed tomography correcting for heterogeneity and attenuation. J. Biomed. Opt., 2012, 17(6): 061211.

[55] T. Lu, et al.. Full-frequency correction of spatial impulse response in back-projection scheme using space-variant filtering for optoacoustic mesoscopy. Photoacoustics, 2020, 19: 100193.

[56] J. Prakash, et al.. Short-wavelength optoacoustic spectroscopy based on water muting. Proc. Natl. Acad. Sci. U. S. A., 2020, 117(8): 4007-4014.

[57] D. S. Wishart, et al.. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res., 2018, 46(D1): D608-D617.

[58] A. Burakowski, J. Gliński. Hydration numbers of nonelectrolytes from acoustic methods. Chem. Rev., 2012, 112(4): 2059-2081.

[59] K. J. Tielrooij, et al.. Cooperativity in ion hydration. Science, 2010, 328(5981): 1006-1009.

[60] Y. Marcus. Effect of ions on the structure of water: structure making and breaking. Chem. Rev., 2009, 109(3): 1346-1370.

[61] M. Z. Jora, M. V. C. Cardoso, E. Sabadini. Dynamical aspects of water-poly(ethylene glycol) solutions studied by 1H NMR. J. Mol. Liq., 2016, 222: 94-100.

[62] A. S. Kolesnikov, et al.. In vitro terahertz monitoring of muscle tissue dehydration under the action of hyperosmotic agents. Quantum Electron., 2014, 44(7): 633-640.

[63] O.A. Smolyanskaya, et al.. Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids. Prog. Quant. Electron., 2018, 62: 1-77.

[64] J. Shi, et al.. High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy. Nat. Photonics, 2019, 13(9): 609-615.

[65] S. Tzoumas, et al.. Unmixing molecular agents from absorbing tissue in multispectral optoacoustic tomography. IEEE Trans. Med. Imaging, 2014, 33(1): 48-60.

[66] B. Cox, et al.. Quantitative spectroscopic photoacoustic imaging: a review. J. Biomed. Opt., 2012, 17(6): 061202.

[67] V. Ntziachristos, D. Razansky. Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem. Rev., 2010, 110(5): 2783-2794.

[68] J. Kappa, et al.. Electrically reconfigurable micromirror array for direct spatial light modulation of terahertz waves over a bandwidth wider than 1 THz. Sci. Rep., 2019, 9(1): 2597.

Jiao Li, Yixin Yao, Liwen Jiang, Shuai Li, Zhihao Yi, Xieyu Chen, Zhen Tian, Weili Zhang. Time-domain terahertz optoacoustics: manipulable water sensing and dampening[J]. Advanced Photonics, 2021, 3(2): 026003.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!