Journal of Innovative Optical Health Sciences, 2019, 12 (4): 1930007, Published Online: Sep. 3, 2019  

Fast optical wavefront engineering for controlling light propagation in dynamic turbid media

Meiyun Xia 1,2Deyu Li 1,2,3Ling Wang 1,2,4,*Daifa Wang 1,2
Author Affiliations
1 School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P. R. China
2 Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, P. R. China
3 State Key Laboratory of Virtual Reality Technology and System, Beihang University, Beijing, 100083, P. R. China
4 College of Computer Science, Sichuan Normal University, Chengdu, 610101, P. R. China
Copy Citation Text

Meiyun Xia, Deyu Li, Ling Wang, Daifa Wang. Fast optical wavefront engineering for controlling light propagation in dynamic turbid media[J]. Journal of Innovative Optical Health Sciences, 2019, 12(4): 1930007.

References

[1] E. Beaurepaire, M. Oheim, J. Mertz, “Ultra-deep two-photon fluorescence excitation in turbid media," Opt. Commun. 188(1), 25–29 (2001).

[2] F. Helmchen, W. Denk, “Deep tissue two-photon microscopy," Nat. Meth. 2(12), 932–940 (2005).

[3] P. Theer, W. Denk, “On the fundamental imagingdepth limit in two-photon microscopy," J. Opt. Soc. Am. A, Opt. Image Sci. Vis. 23(12), 3139–3149 (2006).

[4] E. M. Hillman, D. A. Boas, A. M. Dale, A. K. Dunn, “Laminar optical tomography: Demonstration of millimeter-scale depth-resolved imaging in turbid media," Opt. Lett. 29(14), 1650–1652 (2004).

[5] A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, J. Beuthan, “Near-infrared diffuse optical tomography," Dis. Mark. 18, 313–337 (2002).

[6] S. A. Hilderbrand, R. Weissleder, “Near-infrared fluorescence: Application to in vivo molecular imaging," Cur. Opin. Chem. Biol. 14(1), 71–79 (2010).

[7] F. Stuker, J. Ripoll, M. Rudin, “Fluorescence molecular tomography: Principles and potential for pharmaceutical research," Pharmaceutics 3(2), 229–274 (2011).

[8] C. Darne, Y. Lu, E. M. Sevick-Muraca, “Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update," Phys. Med. Biol. 59(1), R1–R64 (2014).

[9] S. R. Arridge, J. C. Schotland, “Optical tomography: forward and inverse problems," Inverse Probl. 25(12), 123010 (2009).

[10] I. M. Vellekoop, A. P. Mosk, “Focusing coherent light through opaque strongly scattering media," Opt. Lett. 32(16), 2309–2311 (2007).

[11] Z. Shi, M. Davy, A. Z. Genack, “Statistics and control of waves in disordered media," Opt. Exp. 23(9), 12293–12320 (2015).

[12] A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media," Nat. Photon. 6(5), 283–292 (2012).

[13] A. Ishimaru, “Diffusion of light in turbid material," Appl. Opt. 28(12), 2210–2215 (1989).

[14] S. L. Jacques, “Optical properties of biological tissues: A review," Phys. Med. Biol. 58(11), R37–R61 (2013).

[15] M. Kim, W. Choi, Y. Choi, C. Yoon, W. Choi, “Transmission matrix of a scattering medium and its applications in biophotonics," Opt. Exp. 23, 12648 (2015).

[16] A. Ishimaru, “Theory and application of wave propagation and scattering in random media," Proc. IEEE 65, 1030–1061 (1977).

[17] B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, C. Yang, “Translation correlations in anisotropically scattering media," Nat. Phys. 11(8), 684–689 (2015).

[18] I. M. Vellekoop, “Feedback-based wavefront shaping," Opt. Exp. 23(9), 12189–12206 (2015).

[19] R. Horstmeyer, H. Ruan, C. Yang, “Guidestarassisted wavefront-shaping methods for focusing light into biological tissue," Nat. Photon. 9, 563–571 (2015).

[20] D. R. Luke, J. V. Burke, R. G. Lyon, “Optical wavefront reconstruction: Theory and numerical methods," Siam Rev. 44(2), 169–224 (2002).

[21] S. M. Kamali, E. Arbabi, A. Arbabi, A. Faraon, “A review of dielectric optical metasurfaces for wavefront control," Nanophotonics 7(6), 1041–1068 (2018).

[22] T. Yoon, C. S. Kim, K. Kim, J. R. Choi, “Emerging applications of digital micromirror devices in biophotonic fields," Opt. Laser Technol. 104, 17–25 (2018).

[23] Y. X. Ren, R. D. Lu, L. Gong, “Tailoring light with a digital micromirror device," Annal. Der Phys. 527, 447–470 (2015).

[24] J.-H. Park, Z. Yu, K. Lee, P. Lai, Y. Park, “Perspective: Wavefront shaping techniques for controlling multiple light scattering in biological tissues: Toward in vivo applications," APL Photon. 3(10), 100901 (2018).

[25] H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, Y. Park, “Recent advances in wavefront shaping techniques for biomedical applications," Cur. Appl. Phys. 15(5), 632–641 (2015).

[26] G. R. Mello, K. M. Rocha, M. R. Santhiago, D. Smadja, R. R. Krueger, “Applications of wavefront technology," J. Cataract Refract. Surg. 38(9), 1671–1683 (2012).

[27] Z. Yu, H. Li, P. Lai, “Wavefront shaping and its application to enhance photoacoustic imaging," Appl. Sci. 7(12), 1320(1–17) (2017).

[28] M. M. Qureshi, J. Brake, H. J. Jeon, H. Ruan, Y. Liu, A. M. Safi, T. J. Eom, C. Yang, E. Chung, “In vivo study of optical speckle decorrelation time across depths in the mouse brain," Biomed. Opt. Exp. 8(11), 4855–4864 (2017).

[29] M. Jang, H. Ruan, I. M. Vellekoop, B. Judkewitz, E. Chung, C. Yang, “Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: A study on in vivo mouse skin," Biomed. Opt. Exp. 6(1), 72–85 (2015).

[30] J. Brake, M. Jang, C. Yang, “Analyzing the relationship between decorrelation time and tissue thickness in acute rat brain slices using multispeckle diffusing wave spectroscopy," J. Opt. Soc. Am. A, Opt. Image Sci. Vis. 33(2), 270–275 (2016).

[31] V. Viasnoff, F. Lequeux, D. J. Pine, “Multispeckle diffusing-wave spectroscopy: A tool to study slow relaxation and time-dependent dynamics," Rev. Sci. Instrum. 73(6), 2336–2344 (2002).

[32] P. A. Lemieux, D. J. Durian, “Investigating nongaussian scattering processes by using nth -order intensity correlation functions," J. Opt. Soc. Am. A 16(7), 1651–1664 (1999).

[33] M. Cui, E. J. McDowell, C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear," Opt. Exp. 18(1), 25–30 (2010).

[34] Y. Zhou, J. Liang, K. I. Maslov, L. V. Wang, “Calibration-free in vivo transverse blood flowmetry based on cross correlation of slow time pro-files from photoacoustic microscopy," Opt. Lett. 38(19), 3882–3885 (2013).

[35] J. Yao, K. I. Maslov, Y. Shi, L. A. Taber, L. V. Wang, “In vivo photoacoustic imaging of transverse blood flow by using Doppler broadening of bandwidth," Opt. Lett. 35(9), 1419–1421 (2010).

[36] Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light," Nat. Commun. 6, 5904 (2015).

[37] E. N. Leith, J. Upatnieks, “Holographic imagery through diffusing media," J. Opt. Soc. Am. 56(4), 523 (1966).

[38] Z. Yaqoob, D. Psaltis,M. S. Feld, C. Yang, “Optical phase conjugation for turbidity suppression in biological samples," Nat. Photon. 2(2), 110–115 (2008).

[39] X. A. Xu, H. L. Liu, L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media," Nat. Photon. 5(3), 154–157 (2011).

[40] P. Lai, X. Xu, H. Liu, Y. Suzuki, L. V. Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media," J. Biomed. Opt. 16(8), 080505 (2011).

[41] P. Lai, X. Xu, H. Liu, L. V. Wang, “Time-reversed ultrasonically encoded optical focusing in biological tissue," J. Biomed. Opt. 17(3), 030506 (2012).

[42] P. Lai, X. Xu, H. Liu, Y. Suzuki, L. V. Wang, Time-reversed ultrasonically encoded (TRUE) optical focusing in reflection mode: Demonstrations in tissue mimicking phantoms and ex vivo tissue, Proc. SPIE 8223, Photons Plus Ultrasound: Imaging and Sensing 2012 (SPIE BiOS, San Francisco, California, United States, 2012), pp. 82231B-1–82231B-9.

[43] U. Bortolozzo, S. Residori, J. P. Huignard, “Enhancement of the two-wave-mixing gain in a stack of thin nonlinear media by use of the Talbot effect," Opt. Lett. 31(14), 2166–2168 (2006).

[44] P. Hariharan, Basics of Holography, Cambridge University Press (2002).

[45] P. Lai, Y. Suzuki, X. Xu, L. V. Wang, “Focused fluorescence excitation with time-reversed ultrasonically encoded light and imaging in thick scattering media," Laser Phys. Lett. 10(7), 075604 (2013).

[46] P. G€unter, J. P. Huignard, Photorefractive Materials and Their Applications: 1 Basic Effects, Springer (2007).

[47] Y. Suzuki, X. Xu, P. Lai, L. V. Wang, “Energy enhancement in time-reversed ultrasonically encoded optical focusing using a photorefractive polymer," J. Biomed. Opt. 17(8), 080507 (2012).

[48] M. Cui, C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation," Opt. Exp. 18(4), 3444–3455 (2010).

[49] Y. M. Wang, B. Judkewitz, C. A. Dimarzio, C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light," Nat. Commun. 3, 928 (2012).

[50] B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of varianceencoded light (TROVE)," Nat. Photon. 7(4), 300–305 (2013).

[51] E. H. Zhou, H. Ruan, C. Yang, B. Judkewitz, “Focusing on moving targets through scattering samples," Optica 1(4), 227–232 (2014).

[52] C. Ma, X. Xu, Y. Liu, L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media," Nat. Photon. 8(12), 931–936 (2014).

[53] D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation," Optica 2(8), 728–735 (2015).

[54] D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, A. P. Mosk, “Focusing light through rando photonic media by binary amplitude modulation," Opt. Exp. 19(5), 4017–4029 (2011).

[55] T. Laforest, A. Dupret, A. Verdant, F. Ramaz, S. Gigan, G. Tessier, E. B. A. la Guillaume, A 4000 Hz CMOS image sensor with in-pixel processing for light measurement and modulation, 2013 IEEE 11th International New Circuits and Systems Conference (Newcas) (IEEE, Paris, France, 2013), pp. 1–4.

[56] K. Si, R. Fiolka, M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation," Nat. Photon. 6(10), 657–661 (2012).

[57] Y. Liu, C. Ma, Y. Shen, J. Shi, L. V. Wang, “Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation," Optica 4(2), 280–288 (2017).

[58] M. Jang, H. Ruan, B. Judkewitz, C. Yang, “Model for estimating the penetration depth limit of the time-reversed ultrasonically encoded optical focusing technique," Opt. Exp. 22(5), 5787–5807 (2014).

[59] Y. Suzuki, J. W. Tay, Q. Yang, L. V. Wang, “Continuous scanning of a time-reversed ultrasonically encoded optical focus by reflection-mode digital phase conjugation," Opt. Lett. 39(12), 3441–3444 (2014).

[60] Y. Suzuki, L. V. Wang, “Frequency-swept timereversed ultrasonically encoded optical focusing," Appl. Phys. Lett. 105(19), 191108 (2014).

[61] Y. Liu, C. Ma, Y. Shen, L. V. Wang, “Bit-e±cient, sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media," Opt. Lett. 41(7), 1321–1324 (2016).

[62] C. Ma, F. Zhou, Y. Liu, L. V. Wang, “Singleexposure optical focusing inside scattering media using binarized time-reversed adapted perturbation," Optica 2(10), 869–876 (2015).

[63] D. Feldkhun, O. Tzang, K. H. Wagner, R. Piestun, “Focusing and scanning through scattering media in microseconds," Optica 6(1), 72–75 (2019).

[64] I. M. Vellekoop, E. G. van Putten, A. Lagendijk, A. P. Mosk, “Demixing light paths inside disordered metamaterials," Opt. Exp. 16(1), 67–80 (2008).

[65] J. Aulbach, B. Gjonaj, P. Johnson, A. Lagendijk, “Spatiotemporal focusing in opaque scattering media by wave front shaping with nonlinear feedback," Opt. Exp. 20(28), 29237–29251 (2012).

[66] E. G. van Putten, A. Lagendijk, A. P. Mosk, “Optimal concentration of light in turbid materials," J. Opt. Soc. Am. B 28(5), 1200–1203 (2011).

[67] F. Kong, R. H. Silverman, L. Liu, P. V. Chitnis, K. K. Lee, Y. C. Chen, “Photoacoustic-guided convergence of light through optically diffusive media," Opt. Lett. 36(11), 2053–2055 (2011).

[68] J. W. Tay, P. Lai, Y. Suzuki, L. V. Wang, “Ultrasonically encoded wavefront shaping for focusing into random media," Sci. Rep. 4(7485), 3918 (2014).

[69] B. Blochet, L. Bourdieu, S. Gigan, “Focusing light through dynamical samples using fast continuous wavefront optimization," Opt. Lett. 42(23), 4994–4997 (2017).

[70] M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, N. Davidson, “Real-time wavefront shaping through scattering media by alloptical feedback," Nat. Photon. 7(11), 919–924 (2013).

[71] S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media," Phys. Rev. Lett. 104(10), 100601 (2010).

[72] T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix," Nat. Photon. 8(1), 58–64 (2013).

[73] D. B. Conkey, A. M. Caravaca-Aguirre, E. Niv, R. Piestun, “High-speed phase-control of wavefronts with binary amplitude DMD for light control through dynamic turbid media," Proc. SPIE Int. Soc. Opt. Eng. 8617(1), 728–731 (2013).

[74] I. M. Vellekoop, A. Lagendijk, A. P. Mosk, “Exploiting disorder for perfect focusing," Nat. Photon. 4(5), 320–322 (2010).

[75] I. M. Vellekoop, A. P. Mosk, “Phase control algorithms for focusing light through turbid media," Opt. Commun. 281(11), 3071–3080 (2008).

[76] M. Cui, “Parallel wavefront optimization method for focusing light through random scattering media," Opt. Lett. 36(6), 870–872 (2011).

[77] D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments," Opt. Exp. 20(5), 4840–4849 (2012).

[78] D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media," Opt. Exp. 20(2), 1733–1740 (2012).

[79] A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, R. Piestun, “Real-time resilient focusing through a bending multimode fiber," Opt. Exp. 21(10), 12881–12887 (2013).

[80] E. Niv, A. M. Caravaca-Aguirre, D. B. Conkey, R. Piestun, “High-speed phase modulation using the DLP: application in imaging through complex media," Proc. SPIE Int. Soc. Opt. Eng. 9376 (2015).

[81] X. Tao, D. Bodington, M. Reinig, J. Kubby, “Highspeed scanning interferometric focusing by fast measurement of binary transmission matrix for channel demixing," Opt. Exp. 23(11), 14168–14187 (2015).

[82] O. Tzang, E. Niv, S. Singh, S. Labouesse, G. Myatt, R. Piestun, “Wavefront shaping in complex media at 350 kHz with a 1D-to-2D transform," arXiv e-prints, arXiv:1808.09025 (2018).

[83] J. Yoon, M. Lee, K. Lee, N. Kim, J. M. Kim, J. Park, H. Yu, C. Choi, W. D. Heo, Y. Park, “Optogenetic control of cell signaling pathway through scattering skull using wavefront shaping," Sci. Rep. 5, 13289 (2015).

[84] H. Ruan, J. Brake, J. E. Robinson, Y. Liu, M. Jang, C. Xiao, C. Zhou, V. Gradinaru, C. Yang, “Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light," Sci. Adv. 3(12), p. eaao5520 (2017).

[85] A. M. Packer, B. Roska, M. Hausser, “Targeting neurons and photons for optogenetics," Nat. Neurosci. 16(7), 805–815 (2013).

[86] R. Fiolka, K. Si, M. Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light," Opt. Exp. 20(15), 16532–16543 (2012).

[87] J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J. H. Park, W. Y. Oh, W. Jang, S. Lee, Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography," Opt. Exp. 21(3), 2890–2902 (2013).

[88] Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. So, W. Choi, Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium," Phys. Rev. Lett. 111(24), 243901 (2013).

[89] I. N. Papadopoulos, S. Farahi, C. Moser, D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber," Biomed. Opt. Exp. 4(2), 260–270 (2013).

[90] Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, “Scannerfree and wide-field endoscopic imaging by using a single multimode optical fiber," Phys. Rev. Lett. 109(20), 203901 (2012).

[91] S. Farahi, D. Ziegler, I. N. Papadopoulos, D. Psaltis, C. Moser, “Dynamic bending compensation while focusing through a multimode fiber," Opt. Exp. 21 (19), 22504–22514 (2013).

[92] S. Bianchi, R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy," Lab on a Chip 12(3), 635–639 (2012).

[93] I. N. Papadopoulos, S. Farahi, C. Moser, D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation," Opt. Exp. 20(10), 10583–10590 (2012).

[94] Y. Liu, P. Lai, C. Ma, X. Xu, Y. Suzuki, A. A. Grabar, L. V. Wang, “High-speed time-reversed ultrasonically encoded (TRUE) optical focusing in dynamic scattering media at 793 nm," Biomed. Opt. 2014, BS3A.70 (2014).

[95] A. S. Hemphill, J. W. Tay, L. V. Wang, “Hybridized wavefront shaping for high-speed, high-e±ciency focusing through dynamic diffusive media," J. Biomed. Opt. 21(12), 121502 (2016).

[96] H. Yilmaz, W. L. Vos, A. P. Mosk, “Optimal control of light propagation through multiplescattering media in the presence of noise," Biomed. Opt. Exp. 4(9), 1759–1768 (2013).

[97] M. Jang, C. Yang, I. M. Vellekoop, “Optical phase conjugation with less than a photon per degree of freedom," Phys. Rev. Lett. 118(9), 093902 (2017).

[98] H. Ruan, M. Jang, C. Yang, “Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light," Nat. Commun. 6, 8968 (2015).

[99] H. Ruan, T. Haber, Y. Liu, J. Brake, J. Kim, J. M. Berlin, C. Yang, “Focusing light inside scattering media with magnetic-particle-guided wavefront shaping," Optica 4(11), 1337–1343 (2017).

[100] Z. Yu, J. Huangfu, F. Zhao, M. Xia, X. Wu, X. Niu, D. Li, P. Lai, D. Wang, “Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media," Sci. Rep. 8(1), 2927 (2018).

[101] C. Youngwoon, T. R. Hillman, C. Wonjun, L. Niyom, R. R. Dasari, P. T. C. So, C. Wonshik, Y. Zahid, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium," Phys. Rev. Lett. 111(24), 243901 (2013).

[102] A. Hussain, K. Daoudi, E. Hondebrink, W. Steenbergen, “Fluence mapping inside the highly scattering medium using reflection mode acoustooptics," Proc. SPIE 8581, Photons Plus Ultrasound: Imaging and Sensing 2013 (SPIE BiOS, International Society for Optics and Photonics, 2013 (San Francisco, California, United States, 2013), p. 85810U.

[103] Y. Suzuki, W. T. Jian, Y. Qiang, L. V. Wang, “Digital reflection-mode time-reversed ultrasonically encoded (TRUE) optical focusing," Proc. SPIE Int. Soc. Opt. Eng. 8943(1), 131–135 (2014).

[104] H. Ruan, M. Jang, B. Judkewitz, C. Yang, “Iterative time-reversed ultrasonically encoded light focusing in backscattering mode," Sci. Rep. 4(11), p. 7156 (2014).

[105] Y. Liu, Y. Shen, H. Ruan, F. L. Brodie, W. Ttw, C. Yang, L. V. Wang, “Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses," J. Biomed. Opt. 23(1), 1–4 (2018).

Meiyun Xia, Deyu Li, Ling Wang, Daifa Wang. Fast optical wavefront engineering for controlling light propagation in dynamic turbid media[J]. Journal of Innovative Optical Health Sciences, 2019, 12(4): 1930007.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!