Photonics Research, 2019, 7 (7): 07000748, Published Online: Jun. 17, 2019   

Flat gain over arbitrary orbital angular momentum modes in Brillouin amplification Download: 544次

Author Affiliations
1 Heilongjiang Provincial Key Laboratory of Quantum Manipulation & Control, Harbin University of Science and Technology, Harbin 150080, China
2 Department of Physics, School of Science, Harbin University of Science and Technology, Harbin 150080, China
Copy Citation Text

Hongwei Li, Bo Zhao, Liwei Jin, Dongmei Wang, Wei Gao. Flat gain over arbitrary orbital angular momentum modes in Brillouin amplification[J]. Photonics Research, 2019, 7(7): 07000748.

References

[1] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 1992, 45: 8185-8189.

[2] M. J. Padgett. Orbital angular momentum 25 years on. Opt. Express, 2017, 25: 11265-11274.

[3] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 2011, 5: 343-348.

[4] J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 2012, 6: 488-496.

[5] P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, Y. Q. Lu. Digitalizing self-assembled chiral superstructures for optical vortex processing. Adv. Mater., 2018, 30: 1705865.

[6] P. Gregg, P. Kristensen, S. Ramachandran. Conservation of orbital angular momentum in air-core optical fibers. Optica, 2015, 2: 267-270.

[7] G. Foo, D. M. Palacios, G. A. Swartzlander. Optical vortex coronagraph. Opt. Lett., 2005, 30: 3308-3310.

[8] M. Ritschmarte. Orbital angular momentum light in microscopy. Philos. Trans. R. Soc. A, 2017, 375: 20150437.

[9] A. Mair, A. Vaziri, G. Weihs, A. Zeilinger. Entanglement of the orbital angular momentum states of photons. Nature, 2001, 412: 313-316.

[10] D. S. Ding, W. Zhang, S. Shi, Z. Y. Zhou, Y. Li, B. S. Shi, G. C. Guo. High-dimensional entanglement between distant atomic ensemble memories. Light Sci. Appl., 2014, 5: e16157.

[11] M. Erhard, R. Fickler, M. Krenn, A. Zeilinger. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl., 2018, 7: 17146.

[12] A. Aadhi, G. K. Samanta, S. C. Kumar, M. E. Zadeh. Controlled switching of orbital angular momentum in an optical parametric oscillator. Optica, 2017, 4: 349-355.

[13] D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. Dimauro, G. Dovillaire, F. Frassetto, R. Géneaux. Tunable orbital angular momentum in high-harmonic generation. Nat. Commun., 2017, 8: 14971.

[14] Z. Zhu, C. Mu, H. Li, W. Gao. Reversible orbital angular momentum photon–phonon conversion. Optica, 2016, 3: 212-217.

[15] F. Bouchard, J. Harris, H. Mand, R. W. Boyd, E. Karimi. Observation of subluminal twisted light in vacuum. Optica, 2016, 3: 351-354.

[16] S. Liu, S. Qi, Y. Zhang, P. Li, D. Wu, L. Han, J. Zhao. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude. Photon. Res., 2018, 6: 228-233.

[17] R. Xu, P. Chen, J. Tang, W. Duan, S.-J. Ge, L.-L. Ma, R.-X. Wu, W. Hu, Y.-Q. Lu. Perfect higher-order Poincaré sphere beams from digitalized geometric phases. Phys. Rev. Appl., 2018, 10: 034061.

[18] Y. Li, Z. Y. Zhou, S. L. Liu, S. K. Liu, C. Yang, Z. H. Xu, Y. H. Li, B. S. Shi. Frequency doubling of twisted light independent of integer topological charge. OSA Continuum, 2019, 2: 470-477.

[19] J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonca, R. Bingham, P. Norreys, L. O. Silva. High orbital angular momentum harmonic generation. Phys. Rev. Lett., 2016, 117: 265001.

[20] Z. Y. Zhou, Z. H. Zhu, S. L. Liu, Y. H. Li, S. Shi, D. S. Ding, L. X. Chen, W. Gao, G. C. Guo, B. S. Shi. Quantum twisted double-slits experiments: confirming wavefunctions’ physical reality. Sci. Bull., 2017, 62: 1185-1192.

[21] J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonça, R. Bingham, P. Norreys, L. O. Silva. Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering. Nat. Commun., 2016, 7: 10371.

[22] D. J. Kim, J. W. Kim, W. A. Clarkson. High-power master-oscillator power-amplifier with optical vortex output. Appl. Phys. B, 2014, 117: 459-464.

[23] Y. Tanaka, M. Okida, K. Miyamoto, T. Omatsu. High power picosecond vortex laser based on a large-mode-area fiber amplifier. Opt. Express, 2009, 17: 14362-14366.

[24] K. Mio, H. Tetsuya, O. Masahito, M. Katsuhiko, O. Takashige. Nanosecond vortex laser pulses with millijoule pulse energies from a Yb-doped double-clad fiber power amplifier. Opt. Express, 2011, 19: 14420-14425.

[25] G. C. Borba, S. Barreiro, L. Pruvost, D. Felinto, J. W. Tabosa. Narrow band amplification of light carrying orbital angular momentum. Opt. Express, 2016, 24: 10078-10086.

[26] S. Zhu, S. Pidishety, Y. Feng, S. Hong, J. Demas, R. Sidharthan, S. Yoo, S. Ramachandran, B. Srinivasan, J. Nilsson. Multimode-pumped Raman amplification of a higher order mode in a large mode area fiber. Opt. Express, 2018, 26: 23295-23304.

[27] E. G. Johnson, K. Miller, R. Shori, W. Li, Y. Li, Z. Zhang. Concentric vortex beam amplification: experiment and simulation. Opt. Express, 2016, 24: 1658-1667.

[28] X. Heng, J. Gan, Z. Zhang, Q. Qian, Z. Yang. Amplification of orbital angular momentum modes in an erbium-doped solid-core photonic bandgap fiber. Opt. Commun., 2019, 433: 132-136.

[29] W. Gao, C. Y. Mu, H. W. Li, Y. Q. Yang, Z. H. Zhu. Parametric amplification of orbital angular momentum beams based on light-acoustic interaction. Appl. Phys. Lett., 2015, 107: 299-313.

[30] Z. H. Zhu, P. Chen, L. W. Sheng, Y. L. Wang, W. Hu, Y. Q. Lu, W. Gao. Generation of strong cylindrical vector pulses via stimulated Brillouin amplification. Appl. Phys. Lett., 2017, 110: 141104.

[31] C. Guodong, Z. Ruiwen, S. Junqiang, X. Heng, G. Ya, F. Danqi, X. Huang. Mode conversion based on forward stimulated Brillouin scattering in a hybrid phononic-photonic waveguide. Opt. Express, 2014, 22: 32060-32070.

[32] B. Lutherdavies, B. J. Eggleton, B. Morrison, D. Marpaung, D. Y. Choi, M. Pagani, R. Pant, S. J. Madden. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity. Optica, 2015, 2: 76-83.

[33] H. Jiang, D. Marpaung, M. Pagani, K. Vu, D. Y. Choi, S. J. Madden, L. Yan, B. J. Eggleton. Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter. Optica, 2016, 3: 30-34.

[34] E. A. Kittlaus, H. Shin, P. T. Rakich. Large Brillouin amplification in silicon. Nat. Photonics, 2016, 10: 463-467.

[35] E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, P. T. Rakich. Non-reciprocal interband Brillouin modulation. Nat. Photonics, 2018, 12: 613-619.

[36] S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, D. J. Blumenthal. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photonics, 2019, 13: 60-67.

[37] C. Cui, Y. Wang, Z. Lu, H. Yuan, Y. Wang, Y. Chen, Q. Wang, Z. Bai, R. P. Mildren. Demonstration of 2.5 J, 10 Hz, nanosecond laser beam combination system based on non-collinear Brillouin amplification. Opt. Express, 2018, 26: 32717-32727.

[38] Y. P. Xu, M. Q. Ren, Y. Lu, P. Lu, P. Lu, X. Y. Bao, L. X. Wang, Y. Messaddeq, S. Larochelle. Multi-parameter sensor based on stimulated Brillouin scattering in inverse-parabolic graded-index fiber. Opt. Lett., 2016, 41: 1138-1141.

[39] G. Yang, X. Fan, B. Wang, Z. He. Enhancing strain dynamic range of slope-assisted BOTDA by manipulating Brillouin gain spectrum shape. Opt. Express, 2018, 26: 32599-32607.

[40] W. Wei, L. Yi, Y. Jaouën, W. Hu. Arbitrary-shaped Brillouin microwave photonic filter by manipulating a directly modulated pump. Opt. Lett., 2017, 42: 4083-4086.

[41] O. Terra, G. Grosche, H. Schnatz. Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber. Opt. Express, 2010, 18: 16102-16111.

[42] Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, V. V. Yakovlev. Seeing cells in a new light: a renaissance of Brillouin spectroscopy. Adv. Opt. Photon., 2016, 8: 300-327.

[43] C. W. Ballmann, Z. Meng, A. J. Traverso, M. O. Scully, V. V. Yakovlev. Impulsive Brillouin microscopy. Optica, 2017, 4: 124-128.

[44] PrabhakarG.LiuX.DemasJ.GreggP.RamachandranS., “Phase conjugation in OAM fiber modes via stimulated Brillouin scattering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (2018), paper FTh1M.4.

[45] Z. H. Zhu, L. W. Sheng, Z. W. Lv, W. M. He, W. Gao. Orbital angular momentum mode division filtering for photon-phonon coupling. Sci. Rep., 2017, 7: 40526.

[46] BoydR. W., Nonlinear Optics (Academic, 2008), pp. 440452.

[47] S. A. Collins. Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am. A, 1970, 60: 1168-1177.

[48] LvB. D., Laser Optics (Higher Education, 2003), pp. 1114.

Hongwei Li, Bo Zhao, Liwei Jin, Dongmei Wang, Wei Gao. Flat gain over arbitrary orbital angular momentum modes in Brillouin amplification[J]. Photonics Research, 2019, 7(7): 07000748.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!