光散射学报, 2018, 30 (3): 223, 网络出版: 2018-10-06  

碱金属钨酸盐晶体与熔体微结构与特征拉曼振动波数的相关性

The Correlation between the Micro-structure and Characteristic Raman-Active Vibrational Wavenumber of the Crystalline and Molten Alkali Tungstates
作者单位
1 省部共建高品质特殊钢冶金与制备国家重点实验室 上海市钢铁冶金新技术开发应用重点实验室 上海大学材料科学与工程学院,上海,200072,中国
2 CSIRO Process Science and Engineering,昆士兰州,肯莫尔4069,澳大利亚
引用该论文

王建, 尤静林, 王敏, LU Liming. 碱金属钨酸盐晶体与熔体微结构与特征拉曼振动波数的相关性[J]. 光散射学报, 2018, 30(3): 223.

WANG Jian, YOU Jinglin, WANG Min, LU Liming. The Correlation between the Micro-structure and Characteristic Raman-Active Vibrational Wavenumber of the Crystalline and Molten Alkali Tungstates[J]. The Journal of Light Scattering, 2018, 30(3): 223.

参考文献

[1] ZHAO H Y,WANG J Y,LI J,et al.Growth,optical and thermal properties of Yb,Tm: KLu(WO4)2[J].J Cryst Growth,2006,293(1): 223-227.

[2] FERRI F.Role of the CMS electromagnetic calorimeter in the measurement of the Higgs boson properties and search for new physics[J].Nucl Part Phys Proc,2016,273-275: 988-994.

[3] PRALONG V,VENKATESH G,MALO S,et al.Electrochemical synthesis of a Lithium-rich rock-salt-type oxide Li5W2O7 with reversible deintercalation properties[J].Inorg Chem,2014,53(1): 522-527.

[4] LUZ-LIMA C,BATISTA J,FREIRE P,et al.Temperature-dependent Raman spectroscopy studies of phase transformations in the K2WO4 and the MgMoO4 crystals[J].Vib Spectrosc,2013,65: 58-65.

[5] FU H,PAN C,ZHANG L,et al.Synthesis,characterization and photocatalytic properties of nanosized Bi2WO6,PbWO4 and ZnWO4 catalysts[J].Mater Res Bull,2007,42(4): 696-706.

[6] KUMARAN A S,CHANDRU A L,BABU S M,et al.Crystal growth of pure and doped-KGd(WO4)2 and their characterization for laser applications[J].J Cryst Growth,2005,275(1): e2117-e2121.

[7] TANG L,LIN Z,HU Z,et al.Growth and spectral properties of Nd3+: KLu(WO4)2 crystal[J].J Cryst Growth,2005,277(1): 228-232.

[8] HOFFMANN R,HOPPE R.Zwei neue Ordnungs-Varianten des NaCl-Typs: Li4MoO5 und Li4WO5[J].Z Anorg Allg Chem,1989,573(1): 157-169.

[9] HORIUCHI H,MORIMOTO N,YAMAOKA S.The crystal structure of Li2WO4 II: A structure related to spinel[J].J Solid State Chem,1979,30(2): 129-135.

[10] HORIUCHI H,MORIMOTO N,YAMAOKA S.The crystal structure of Li2WO4(IV)and its relation to the wolframite-type structure[J].J Solid State Chem,1980,33(1): 115-119.

[11] SINGH D J.Relationship of Li2WO4 to the scheelite tungstate scintillators: electronic structure and atomic positions from density-functional calculations[J].Phys Rev B,2008,77: 113101.

[12] OKADA K,MORIKAWA H,MARUMO F,et al.The crystal structure of Li2W2O7[J].Acta Crystallogr,Sect B,1975,31(5): 1451-1454.

[13] HOFFMANN R,HOPPE R.Ein Oxowolframat mit "Kanalstruktur": KNa3WO5(Mit einer Bemerkung über den Aufbau von Na4WO5)[J].Z Anorg Allg Chem,1989,573(1): 143-156.

[14] DOMINIC FORTES A.Crystal structures of spinel-type Na2MoO4 and Na2WO4 revisited using neutron powder diffraction[J].Acta Crystallogr,Sect E,2015,71(6): 592-596.

[15] OKADA K,MORIKAWA H,MARUMO F,et al.Disodium ditungstate[J].Acta Crystallogr,Sect B,1975,31(4): 1200-1201.

[16] RANGE K-J,HAASE H.Na2W2O7(II),a high-pressure phase of disodium ditungstate(VI)[J].Acta Crystallogr,Sect C,1990,46(2): 317-318.

[17] VISWANATHAN K.Crystal structure of sodium tetratungstate,Na2W4O13[J].J Chem Soc,Dalton Trans,1974,20: 2170-2172.

[18] HAUCK J.Notizen: Zur Kristallstruktur des Li6WO6[J].Z Naturforsch B,1969,24(2): 251.

[19] WILHELMI K,WALTERSSON K,LOFGREN P.On the structure of a high pressure polymorph of lithium wolframate(VI),Li2WO4(III)[J].Cryst Struct Commun,1977,6: 219-225.

[20] WANG J,YOU J L,SOBOL A A,et al.In-situ high temperature Raman spectroscopic study on the structural evolution of Na2W2O7 from the crystalline to molten states[J].J Raman Spectrosc,2017,48(2): 298-304.

[21] WANG J,YOU J,WANG M,et al.In-situ studies on the micro-structure evolution of A2W2O7(A = Li,Na,K)during melting by high temperature Raman spectroscopy and density functional theory[J].Spectrochim Acta,Part A,2017,185: 188-196.

[22] VORONKO Y K,SOBOL A,SHUKSHIN V.Raman scattering study of molten alkali-metal molybdates and tungstates rich in basic oxides[J].Inorg Mater,2014,50(8): 837-843.

[23] HARDCASTLE F D,Wachs I E.Determination of the molecular structures of tungstates by Raman spectroscopy[J].J Raman Spectrosc,1995,26(6): 397-405.

[24] FRISCH M J,TRUCKS G W,SCHLEGEL H B,et al.Gaussian 09,Revision A.01,Gaussian,Inc.,Wallingford CT,2009.

[25] YOU J L,JIANG G C,HOU H Y, et al.Quantum chemistry study on superstructure and Raman spectra of binary sodium silicates[J].J Raman Spectrosc,2005,36(3): 237-249.

[26] LABET V,COLOMBAN P.Vibrational properties of silicates: A cluster model able to reproduce the effect of "SiO4" polymerization on Raman intensities[J].J Non-Cryst Solids,2013,370: 10-17.

[27] SEGALL M D,LINDAN P J D,PROBERT M J,et al.First-principles simulation: ideas,illustrations and the CASTEP code[J].J Phys: Condens Matter,2002,14(11): 2717-2744.

[28] CLARK S J,SEGALL M D,PICKARD C J,et al.First principles methods using CASTEP[J].Z Krist,2005,220: 567-570.

[29] MILMAN V,REFSON K,CLARK S J,et al.Electron and vibrational spectroscopies using DFT,plane waves and pseudopotentials: CASTEP implementation[J].J Mol Struct Theochem,2010,954(1-3): 22-35.

[30] HAMANN D R,SCHLTER M,CHIANG C.Norm-conserving pseudopotentials[J].Phys Rev Lett,1979,43(20): 1494-1497.

[31] PERDEW J P,BURKE K,ERNZERHOF M.Generalized gradient approximation made simple[J].Phys Rev Lett,1996,77(18): 3865-3868.

[32] WU Z,COHEN R E.More accurate generalized gradient approximation for solids[J].Phys Rev B,2006,73(23): 235116.

[33] MONKHORST H J,PACK J D.Special points for Brillouin-zone integrations[J].Phys Rev B,1976,13(12): 5188-5192.

[34] BECKE A D.Density-functional thermochemistry.III.The role of exact exchange[J].J Chem Phys,1993,98(7): 5648-5652.

[35] LEE C,YANG W,PARR R.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J].Phys Rev B,1988,37(2): 785-789.

[36] KRISHNAN R,BINKLEY J S,SEEGER R,et al.Self-consistent molecular orbital methods.XX.A basis set for correlated wave functions[J].J Chem Phys,1980,72(1): 650-654.

[37] MCLEAN A,CHANDLER G.Contracted Gaussian basis sets for molecular calculations.I.Second row atoms,Z= 11-18[J].J Chem Phys,1980,72(10): 5639-5648.

[38] HAY P J,WADT W R.Ab initio effective core potentials for molecular calculations.Potentials for the transition metal atoms Sc to Hg[J].J Chem Phys,1985,82(1): 270-283.

[39] OLIVIER L,YUAN X,CORMACK A N,et al.Combined29Si double quantum NMR and MD simulation studies of network connectivities of binary Na2O·SiO2 glasses: new prospects and problems[J].J Non-Cryst Solids,2001,293: 53-66.

[40] VORON’KO Y K,SOBOL’ A A.Influence of cations on the vibrational spectra and structure of[WO4] complexes in molten tungstates[J].Inorg Mater,2005,41(4): 420-428.

[41] 王建,尤静林,王媛媛,等.Li2O-WO3二元系熔融钨酸盐原位拉曼光谱研究[J].光散射学报.2016,28(2): 149-152.(WANG Jian,YOU Jinglin,WANG Yuanyuan,et al.In-situ Raman spectroscopic study of the molten tungstates in Li2O-WO3 binary system[J].The Journal of light scattering,2016,28(2): 149-152.)

王建, 尤静林, 王敏, LU Liming. 碱金属钨酸盐晶体与熔体微结构与特征拉曼振动波数的相关性[J]. 光散射学报, 2018, 30(3): 223. WANG Jian, YOU Jinglin, WANG Min, LU Liming. The Correlation between the Micro-structure and Characteristic Raman-Active Vibrational Wavenumber of the Crystalline and Molten Alkali Tungstates[J]. The Journal of Light Scattering, 2018, 30(3): 223.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!