Frontiers of Optoelectronics, 2020, 13 (2): 114, 网络出版: 2020-11-25   

Graphene-based all-optical modulators

Graphene-based all-optical modulators
作者单位
1 Key Laboratory of Micro-Nano Electronics and Smart System of Zhejiang Province, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
2 School of Microelectronics, Zhejiang University, Hangzhou 310027, China
3 College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
引用该论文

Chuyu ZHONG, Junying LI, Hongtao LIN. Graphene-based all-optical modulators[J]. Frontiers of Optoelectronics, 2020, 13(2): 114.

Chuyu ZHONG, Junying LI, Hongtao LIN. Graphene-based all-optical modulators[J]. Frontiers of Optoelectronics, 2020, 13(2): 114.

参考文献

[1] Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H, Chiba H, Notomi M. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nature Photonics, 2020, 14(1): 37–43

[2] Reed G T, Mashanovich G, Gardes F Y, Thomson D J. Silicon optical modulators. Nature Photonics, 2010, 4(8): 518–526

[3] He M, Xu M, Ren Y, Jian J, Ruan Z, Xu Y, Gao S, Sun S, Wen X, Zhou L, Liu L, Guo C, Chen H, Yu S, Liu L, Cai X. Highperformance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit$s–1 and beyond. Nature Photonics, 2019, 13(5): 359–364

[4] Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lon?ar M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562(7725): 101–104

[5] Li M, Wang L, Li X, Xiao X, Yu S. Silicon intensity Mach– Zehnder modulator for single lane 100 Gb/s applications. Photonics Research, 2018, 6(2): 109–116

[6] Alloatti L, Palmer R, Diebold S, Pahl K P, Chen B, Dinu R, Fournier M, Fedeli J M, Zwick T, Freude W, Koos C, Leuthold J. 100 GHz silicon–organic hybrid modulator. Light, Science & Applications, 2014, 3(5): e173

[7] Haffner C, Heni W, Fedoryshyn Y, Niegemann J, Melikyan A, Elder D L, Baeuerle B, Salamin Y, Josten A, Koch U, Hoessbacher C, Ducry F, Juchli L, Emboras A, Hillerkuss D, Kohl M, Dalton L R, Hafner C, Leuthold J. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nature Photonics, 2015, 9(8): 525–528

[8] Ayata M, Fedoryshyn Y, Heni W, Baeuerle B, Josten A, Zahner M, Koch U, Salamin Y, Hoessbacher C, Haffner C, Elder D L, Dalton L R, Leuthold J. High-speed plasmonic modulator in a single metal layer. Science, 2017, 358(6363): 630–632

[9] affner C, Chelladurai D, Fedoryshyn Y, Josten A, Baeuerle B, Heni W,Watanabe T, Cui T, Cheng B, Saha S, Elder D L, Dalton L R, Boltasseva A, Shalaev V M, Kinsey N, Leuthold J. Low-loss plasmon-assisted electro-optic modulator. Nature, 2018, 556 (7702): 483–486

[10] Davoodi F, Granpayeh N. All optical logic gates – a tutorial. International Journal of Information & Communication Technology Research, 2012, 43(3): 65–98

[11] Singh P, Tripathi D K, Jaiswal S, Dixit H K. All-optical logic gates: designs, classification, and comparison. Advances in Optical Technologies, 2014, 2014: 275083

[12] Minzioni P, Lacava C, Tanabe T, Dong J, Hu X, Csaba G, Porod W, Singh G, Willner A E, Almaiman A, Torres-Company V, Schr?der J, Peacock A C, StrainMJ, Parmigiani F, Contestabile G, Marpaung D, Liu Z, Bowers J E, Chang L, Fabbri S, Ramos Vázquez M, Bharadwaj V, Eaton S M, Lodahl P, Zhang X, Eggleton B J, Munro W J, Nemoto K, Morin O, Laurat J, Nunn J. Roadmap on all-optical processing. Journal of Optics, 2019, 21(6): 063001

[13] Chai Z, Hu X, Wang F, Niu X, Xie J, Gong Q. Ultrafast all-optical switching. Advanced Optical Materials, 2017, 5(7): 1600665

[14] Sasikala V, Chitra K. All optical switching and associated technologies: a review. Journal of Optics, 2018, 47(3): 307–317

[15] Almeida V R, Barrios C A, Panepucci R R, Lipson M. All-optical control of light on a silicon chip. Nature, 2004, 431(7012): 1081– 1084

[16] Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J. All-optical high-speed signal processing with silicon– organic hybrid slot waveguides. Nature Photonics, 2009, 3(4): 216–219

[17] Gholipour B, Zhang J, MacDonald K F, Hewak D W, Zheludev N I. An all-optical, non-volatile, bidirectional, phase-change metaswitch. Advanced Materials, 2013, 25(22): 3050–3054

[18] Chai Z, Zhu Y, Hu X, Yang X, Gong Z,Wang F, Yang H, Gong Q. On-chip optical switch based on plasmon-photon hybrid nanostructure- coated multicomponent nanocomposite. Advanced Optical Materials, 2016, 4(8): 1159–1166

[19] Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T, Taniyama H, Notomi M. Sub-femtojoule all-optical switching using a photoniccrystal nanocavity. Nature Photonics, 2010, 4(7): 477–483

[20] Vo T D, Pant R, Pelusi MD, Schr?der J, Choi D Y, Debbarma S K, Madden S J, Luther-Davies B, Eggleton B J. Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals. Optics Letters, 2011, 36(5): 710–712

[21] Hou J, Chen L, Dong W, Zhang X. 40 Gb/s reconfigurable optical logic gates based on FWM in silicon waveguide. Optics Express, 2016, 24(3): 2701–2711

[22] Chai Z, Zhu Y, Hu X Y, Yang X Y, Gong Z B, Wang F F, Yang H, Gong Q H. On-chip optical switch based on plasmon-photon hybrid nanostructure-coated multicomponent nanocomposite. Advanced Optical Materials, 2016, 4(8): 1159–1166

[23] Wang F, Hu X, Song H, Li C, Yang H, Gong Q. Ultralow-power all-optical logic data distributor based on resonant excitation enhanced nonlinearity by upconversion radiative transfer. Advanced Optical Materials, 2017, 5(20): 1700360

[24] Chai Z, Hu X,Wang F, Li C, Ao Y,Wu Y, Shi K, Yang H, Gong Q. Ultrafast on-chip remotely-triggered all-optical switching based on epsilon-near-zero nanocomposites. Laser & Photonics Reviews, 2017, 11(5): 1700042

[25] Yang X, Hu X, Yang H, Gong Q. Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities. Nanophotonics, 2017, 6(1): 365–376

[26] Dong W, Huang Z, Hou J, Santos R, Zhang X. Integrated alloptical programmable logic array based on semiconductor optical amplifiers. Optics Letters, 2018, 43(9): 2150–2153

[27] Guo B, Xiao Q L, Wang S H, Zhang H. 2D layered materials: synthesis, nonlinear optical properties, and device applications. Laser & Photonics Reviews, 2019, 13(12): 1800327

[28] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A. 2D transition metal dichalcogenides. Nature Reviews. Materials, 2017, 2(8): 17033

[29] Tarruell L, Greif D, Uehlinger T, Jotzu G, Esslinger T. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature, 2012, 483(7389): 302–305

[30] Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Twodimensional material nanophotonics. Nature Photonics, 2014, 8 (12): 899–907

[31] Yu S, Wu X, Wang Y, Guo X, Tong L. 2D materials for optical modulation: challenges and opportunities. Advanced Materials, 2017, 29(14): 1606128

[32] Jin L, Ma X, Zhang H, Zhang H, Chen H, Xu Y. 3 GHz passively harmonic mode-locked Er-doped fiber laser by evanescent fieldbased nano-sheets topological insulator. Optics Express, 2018, 26 (24): 31244–31252

[33] Koo J, Park J, Lee J, Jhon Y M, Lee J H. Femtosecond harmonic mode-locking of a fiber laser at 3.27 GHz using a bulk-like, MoSe2-based saturable absorber. Optics Express, 2016, 24(10): 10575–10589

[34] Li Z, Li R, Pang C, Dong N, Wang J, Yu H, Chen F. 8.8 GHz Qswitched mode-locked waveguide lasers modulated by PtSe2 saturable absorber. Optics Express, 2019, 27(6): 8727–8737

[35] Liu M, Tang R, Luo A P, Xu W C, Luo Z C. Graphene-decorated microfiber knot as a broadband resonator for ultrahigh repetitionrate pulse fiber lasers. Photonics Research, 2018, 6(10): C1–C7

[36] Liu M, Zheng X W, Qi Y L, Liu H, Luo A P, Luo Z C, Xu W C, Zhao C J, Zhang H. Microfiber-based few-layer MoS2 saturable absorber for 2.5 GHz passively harmonic mode-locked fiber laser. Optics Express, 2014, 22(19): 22841–22846

[37] Liu W, Pang L, Han H, Liu M, Lei M, Fang S, Teng H, Wei Z. Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers. Optics Express, 2017, 25(3): 2950– 2959

[38] Qi Y L, Liu H, Cui H, Huang Y Q, Ning Q Y, Liu M, Luo Z C, Luo A P, Xu W C. Graphene-deposited microfiber photonic device for ultrahigh-repetition rate pulse generation in a fiber laser. Optics Express, 2015, 23(14): 17720–17726

[39] Yan P, Lin R, Ruan S, Liu A, Chen H. A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film. Optics Express, 2015, 23(1): 154–164

[40] Luo Z, Li Y, Zhong M, Huang Y, Wan X, Peng J, Weng J. Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe2) for passively mode-locked soliton fiber laser. Photonics Research, 2015, 3(3): A79–A86

[41] Zhang B Y, Liu T, Meng B, Li X, Liang G, Hu X, Wang Q J. Broadband high photoresponse from pure monolayer graphene photodetector. Nature Communications, 2013, 4(1): 1811

[42] Tan W C, Huang L, Ng R J, Wang L, Hasan D M N, Duffin T J, Kumar K S, Nijhuis C A, Lee C, Ang K W. A black phosphorus carbide infrared phototransistor. Advanced Materials, 2018, 30(6): 1705039

[43] Talebi H, Dolatyari M, Rostami G, Manzuri A, Mahmudi M, Rostami A. Fabrication of fast mid-infrared range photodetector based on hybrid graphene-PbSe nanorods. Applied Optics, 2015, 54(20): 6386–6390

[44] Jabbarzadeh F, Siahsar M, Dolatyari M, Rostami G, Rostami A. Fabrication of new mid-infrared photodetectors based on graphene modified by organic molecules. IEEE Sensors Journal, 2015, 15 (5): 2795–2800

[45] Huang L, Tan W C, Wang L, Dong B, Lee C, Ang K W. Infrared black phosphorus phototransistor with tunable responsivity and low noise equivalent power. ACS Applied Materials & Interfaces, 2017, 9(41): 36130–36136

[46] Guo Q, Pospischil A, Bhuiyan M, Jiang H, Tian H, Farmer D, Deng B, Li C, Han S J, Wang H, Xia Q, Ma T P, Mueller T, Xia F. Black phosphorus mid-infrared photodetectors with high gain. Nano Letters, 2016, 16(7): 4648–4655

[47] Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Twodimensional material nanophotonics. Nature Photonics, 2014, 8 (12): 899–907

[48] Sun Z, Martinez A, Wang F. Optical modulators with 2D layered materials. Nature Photonics, 2016, 10(4): 227–238

[49] Youngblood N, Li M. Integration of 2D materials on a silicon photonics platform for optoelectronics applications. Nanophotonics, 2017, 6(6): 1205–1218

[50] Ma Z, Hemnani R, Bartels L, Agarwal R, Sorger V J. 2D materials in electro-optic modulation: energy efficiency, electrostatics, mode overlap, material transfer and integration. Applied Physics A, Materials Science & Processing, 2018, 124(2): 126

[51] Fang Y, Ge Y,Wang C, Zhang H. Mid-infrared photonics using 2D materials: status and challenges. Laser & Photonics Reviews, 2020, 14(1): 1900098

[52] Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191

[53] Bao Q, Zhang H, Ni Z,Wang Y, Polavarapu L, Shen Z, Xu Q, Tang D, Loh K P. Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Research, 2011, 4(3): 297–307

[54] Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P, Tang D Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Advanced Functional Materials, 2009, 19(19): 3077–3083

[55] Bao Q, Zhang H, Yang J,Wang S, Tang D, Jose R, Ramakrishna S, Lim C T, Loh K P. Graphene-polymer nanofiber membrane for ultrafast photonics. Advanced Functional Materials, 2010, 20(5): 782–791

[56] Zhang H, Tang D, Knize R J, Zhao L, Bao Q, Loh K P. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. Applied Physics Letters, 2010, 96(11): 111112

[57] Liu XM, Yang H R, Cui Y D, Chen GW, Yang Y,Wu X Q, Yao X K, Han D D, Han X X, Zeng C, Guo J, Li W L, Cheng G, Tong L M. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers. Scientific Reports, 2016, 6(1): 26024

[58] Wu J, Yang Z, Qiu C, Zhang Y,Wu Z, Yang J, Lu Y, Li J, Yang D, Hao R, Li E, Yu G, Lin S. Enhanced performance of a graphene/ GaAs self-driven near-infrared photodetector with upconversion nanoparticles. Nanoscale, 2018, 10(17): 8023–8030

[59] Fl?ry N, Ma P, Salamin Y, Emboras A, Taniguchi T, Watanabe K, Leuthold J, Novotny L. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nature Nanotechnology, 2020, 15(2): 118–124

[60] Wang X, Gan X. Graphene integrated photodetectors and optoelectronic devices – a review. Chinese Physics B, 2017, 26(3): 034201

[61] Youngblood N, Anugrah Y, Ma R, Koester S J, Li M. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Letters, 2014, 14(5): 2741–2746

[62] Gao Y, Shiue R J, Gan X, Li L, Peng C, Meric I, Wang L, Szep A, Walker D Jr, Hone J, Englund D. High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. Nano Letters, 2015, 15(3): 2001– 2005

[63] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X. A graphene-based broadband optical modulator. Nature, 2011, 474(7349): 64–67

[64] Liang G, Hu X, Yu X, Shen Y, Li L H, Davies A G, Linfield E H, Liang H K, Zhang Y, Yu S F, Wang Q J. Integrated terahertz graphene modulator with 100% modulation depth. ACS Photonics, 2015, 2(11): 1559–1566

[65] Phare C T, Daniel Lee Y H, Cardenas J, Lipson M. Graphene electro-optic modulator with 30 GHz bandwidth. Nature Photonics, 2015, 9(8): 511–514

[66] Yu L, Yin Y, Shi Y, Dai D, He S. Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica, 2016, 3(2): 159–166

[67] Yan S, Zhu X, Frandsen L H, Xiao S, Mortensen N A, Dong J, Ding Y. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nature Communications, 2017, 8(1): 14411

[68] Lin H, Song Y, Huang Y, Kita D, Deckoff-Jones S, Wang K, Li L, Li J, Zheng H, Luo Z, Wang H, Novak S, Yadav A, Huang C C, Shiue R J, Englund D, Gu T, Hewak D, Richardson K, Kong J, Hu J. Chalcogenide glass-on-graphene photonics. Nature Photonics, 2017, 11(12): 798–805

[69] Wu J, Lu Y, Feng S, Wu Z, Lin S, Hao Z, Yao T, Li X, Zhu H, Lin S. The interaction between quantum dots and graphene. Applications in Graphene-Based Solar Cells and Photodetectors, 2018, 28 (50): 1804712

[70] Sorianello V, Midrio M, Contestabile G, Asselberghs I, Van Campenhout J, Huyghebaert C, Goykhman I, Ott A K, Ferrari A C, Romagnoli M. Graphene–silicon phase modulators with gigahertz bandwidth. Nature Photonics, 2018, 12(1): 40–44

[71] Cheng Z, Zhu X, Galili M, Frandsen L H, Hu H, Xiao S, Dong J, Ding Y, Oxenl?we L K, Zhang X. Double-layer graphene on photonic crystal waveguide electro-absorption modulator with 12 GHz bandwidth. Nanophotonics, 2019, doi: 10.1515/nanoph- 2019-0381

[72] Chen K, Zhou X, Cheng X, Qiao R, Cheng Y, Liu C, Xie Y, Yu W, Yao F, Sun Z, Wang F, Liu K, Liu Z. Graphene photonic crystal fibre with strong and tunable light–matter interaction. Nature Photonics, 2019, 13(11): 754–759

[73] Cheng Z, Cao R, Guo J, Yao Y, Wei K, Gao S, Wang Y, Dong J, Zhang H. Phosphorene-assisted silicon photonic modulator with fast response time. Nanophotonics, 2020, doi: 10.1515/nanoph- 2019-0510

[74] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200

[75] Geim A K. Graphene: status and prospects. Science, 2009, 324 (5934): 1530–1534

[76] Luo S, Wang Y, Tong X, Wang Z. Graphene-based optical modulators. Nanoscale Research Letters, 2015, 10(1): 199

[77] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146(9–10): 351–355

[78] Mak K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A, Heinz T F. Measurement of the optical conductivity of graphene. Physical Review Letters, 2008, 101(19): 196405

[79] Novoselov K S, Fal’ko V I, Colombo L, Gellert P R, Schwab MG, Kim K. A roadmap for graphene. Nature, 2012, 490(7419): 192– 200

[80] Xing G, Guo H, Zhang X, Sum T C, Huan C H. The physics of ultrafast saturable absorption in graphene. Optics Express, 2010, 18(5): 4564–4573

[81] Sun D, Wu Z K, Divin C, Li X, Berger C, de Heer W A, First P N, Norris T B. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Physical Review Letters, 2008, 101(15): 157402

[82] Dong P, Qian W, Liang H, Shafiiha R, Feng N N, Feng D, Zheng X, Krishnamoorthy A V, Asghari M. Low power and compact reconfigurable multiplexing devices based on silicon microring resonators. Optics Express, 2010, 18(10): 9852–9858

[83] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Superior thermal conductivity of single-layer graphene. Nano Letters, 2008, 8(3): 902–907

[84] Gan X, Zhao C, Wang Y, Mao D, Fang L, Han L, Zhao J. Graphene-assisted all-fiber phase shifter and switching. Optica, 2015, 2(5): 468–471

[85] Wang Y, Gan X, Zhao C, Fang L, Mao D, Xu Y, Zhang F, Xi T, Ren L, Zhao J. All-optical control of microfiber resonator by graphene’s photothermal effect. Applied Physics Letters, 2016, 108(17): 171905

[86] Qiu C, Yang Y, Li C,Wang Y,Wu K, Chen J. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Scientific Reports, 2017, 7(1): 17046

[87] Tielrooij K J, Hesp N C H, Principi A, Lundeberg M B, Pogna E A A, Banszerus L, Mics Z, Massicotte M, Schmidt P, Davydovskaya D, Purdie D G, Goykhman I, Soavi G, Lombardo A, Watanabe K, Taniguchi T, Bonn M, Turchinovich D, Stampfer C, Ferrari A C, Cerullo G, Polini M, Koppens F H L. Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling. Nature Nanotechnology, 2018, 13(1): 41–46

[88] Soref R, Bennett B. Electrooptical effects in silicon. IEEE Journal of Quantum Electronics, 1987, 23(1): 123–129

[89] Weis P, Garcia-Pomar J L, H?h M, Reinhard B, Brodyanski A, Rahm M. Spectrally wide-band terahertz wave modulator based on optically tuned graphene. ACS Nano, 2012, 6(10): 9118–9124

[90] Wen Q Y, Tian W, Mao Q, Chen Z, Liu W W, Yang Q H, Sanderson M, Zhang H W. Graphene based all-optical spatial terahertz modulator. Scientific Reports, 2014, 4(1): 7409

[91] Zhang H, Virally S, Bao Q, Ping L K, Massar S, Godbout N, Kockaert P. Z-scan measurement of the nonlinear refractive index of graphene. Optics Letters, 2012, 37(11): 1856–1858

[92] Yu S, Wu X, Chen K, Chen B, Guo X, Dai D, Tong L, Liu W, Ron Shen Y. All-optical graphene modulator based on optical Kerr phase shift. Optica, 2016, 3(5): 541–544

[93] Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M, Ferrari A C. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4(2): 803–810

[94] Bao Q, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 2012, 6(5): 3677–3694

[95] Marini A, Cox J D, García De Abajo F J. Theory of graphene saturable absorption. Physical Review B, 2017, 95(12): 125408

[96] Brida D, Tomadin A, Manzoni C, Kim Y J, Lombardo A, Milana S, Nair R R, Novoselov K S, Ferrari A C, Cerullo G, Polini M. Ultrafast collinear scattering and carrier multiplication in graphene. Nature Communications, 2013, 4: 1987

[97] Hanson G W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. Journal of Applied Physics, 2008, 103(6): 064302

[98] Tielrooij K J, Piatkowski L, Massicotte M,Woessner A, Ma Q, Lee Y, Myhro K S, Lau C N, Jarillo-Herrero P, van Hulst N F, Koppens F H L. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. Nature Nanotechnology, 2015, 10(5): 437–443

[99] oavi G, Wang G, Rostami H, Tomadin A, Balci O, Paradisanos I, Pogna E A A, Cerullo G, Lidorikis E, Polini M, Ferrari A C. Hot electrons modulation of third-harmonic generation in graphene. ACS Photonics, 2019, 6(11): 2841–2849

[100] Song J C W, Tielrooij K J, Koppens F H L, Levitov L S. Photoexcited carrier dynamics and impact-excitation cascade in graphene. Physical Review B, 2013, 87(15): 155429

[101] Dawlaty J M, Shivaraman S, Chandrashekhar M, Rana F, Spencer M G. Measurement of ultrafast carrier dynamics in epitaxial graphene. Applied Physics Letters, 2008, 92(4): 042116

[102] Trushin M, Grupp A, Soavi G, Budweg A, De Fazio D, Sassi U, Lombardo A, Ferrari A C, Belzig W, Leitenstorfer A, Brida D. Ultrafast pseudospin dynamics in graphene. Physical Review B, 2015, 92(16): 165429

[103] Song J C, Reizer M Y, Levitov L S. Disorder-assisted electronphonon scattering and cooling pathways in graphene. Physical Review Letters, 2012, 109(10): 106602

[104] Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, Hu Z, Xu Y, Tong L,Wang H, Liu W, Bao J, Shen Y R. Ultrafast all-optical graphene modulator. Nano Letters, 2014, 14(2): 955–959

[105] Tomadin A, Hornett S M, Wang H I, Alexeev E M, Candini A, Coletti C, Turchinovich D, Kl?ui M, Bonn M, Koppens F H L, Hendry E, Polini M, Tielrooij K J. The ultrafast dynamics and conductivity of photoexcited graphene at different Fermi energies. Science Advances, 2018, 4(5): eaar5313

[106] Mikhailov S A. Theory of the strongly nonlinear electrodynamic response of graphene: a hot electron model. Physical Review B, 2019, 100(11): 115416

[107] TianWC, LiWH, YuWB, Liu X H. A review on lattice defects in graphene: types, generation, effects and regulation. Micromachines, 2017, 8(5): 163

[108] George P A, Strait J, Dawlaty J, Shivaraman S, Chandrashekhar M, Rana F, Spencer M G. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Letters, 2008, 8(12): 4248–4251

[109] Majumdar A, Kim J, Vuckovic J, Wang F. Electrical control of silicon photonic crystal cavity by graphene. Nano Letters, 2013, 13 (2): 515–518

[110] Fan K, Suen J, Wu X, Padilla W J. Graphene metamaterial modulator for free-space thermal radiation. Optics Express, 2016, 24(22): 25189–25201

[111] Zeng B, Huang Z, Singh A, Yao Y, Azad A K, Mohite A D, Taylor A J, Smith D R, Chen H T. Hybrid graphene metasurfaces for highspeed mid-infrared light modulation and single-pixel imaging. Light, Science & Applications, 2018, 7(1): 51

[112] Gan X, Mak K F, Gao Y, You Y, Hatami F, Hone J, Heinz T F, Englund D. Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Letters, 2012, 12(11): 5626–5631

[113] Shi Z, Gan L, Xiao T, Guo H, Li Z. All-optical modulation of a graphene-cladded silicon photonic crystal cavity. ACS Photonics, 2015, 2(11): 1513–1518

[114] Liu Z B, Feng M, Jiang W S, Xin W, Wang P, Sheng Q W, Liu Y G, Wang D N, Zhou W Y, Tian J G. Broadband all-optical modulation using a graphene-covered-microfiber. Laser Physics Letters, 2013, 10(6): 065901

[115] Chen J H, Zheng B C, Shao G H, Ge S J, Xu F, Lu Y Q. An alloptical modulator based on a stereo graphene–microfiber structure. Light, Science & Applications, 2015, 4(12): e360

[116] Yu S L, Meng C, Chen B,Wang H, Wu X, Liu W, Zhang S, Liu Y, Su Y, Tong L. Graphene decorated microfiber for ultrafast optical modulation. Optics Express, 2015, 23(8): 10764–10770

[117] Meng C, Yu S L, Wang H Q, Cao Y, Tong L M, Liu W T, Shen Y R. Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding. Light, Science & Applications, 2015, 4 (11): e348

[118] Zhang H, Healy N, Shen L, Huang C C, Hewak DW, Peacock A C. Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss. Scientific Reports, 2016, 6(1): 23512

[119] Debnath P C, Uddin S, Song Y W. Ultrafast all-optical switching incorporating in situ graphene grown along an optical fiber by the evanescent field of a laser. ACS Photonics, 2018, 5(2): 445–455

[120] Romagnoli M, Sorianello V, Midrio M, Koppens F H L, Huyghebaert C, Neumaier D, Galli P, Templ W, D’errico A, Ferrari A C. Graphene-based integrated photonics for nextgeneration datacom and telecom. Nature Reviews Materials, 2018, 3(10): 392–414

[121] Yu L, Zheng J, Xu Y, Dai D, He S. Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits. ACS Nano, 2014, 8(11): 11386–11393

[122] Sun F, Xia L, Nie C, Shen J, Zou Y, Cheng G, Wu H, Zhang Y, Wei D, Yin S, Du C. The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure. Nanotechnology, 2018, 29(13): 135201

[123] Sun F, Xia L, Nie C, Qiu C, Tang L, Shen J, Sun T, Yu L, Wu P, Yin S, Yan S, Du C. An all-optical modulator based on a graphene– plasmonic slot waveguide at 1550 nm. Applied Physics Express, 2019, 12(4): 042009

[124] Wang H, Yang N, Chang L, Zhou C, Li S, Deng M, Li Z, Liu Q, Zhang C, Li Z, Wang Y. CMOS-compatible all-optical modulator based on the saturable absorption of graphene. Photonics Research, 2020, 8(4): 468

[125] Ono M, Taniyama H, Xu H, Tsunekawa M, Kuramochi E, Nozaki K, Notomi M. Deep-subwavelength plasmonic mode converter with large size reduction for Si-wire waveguide. Optica, 2016, 3 (9): 999–1005

[126] Ruzicka B A,Wang S,Werake L K,Weintrub B, Loh K P, Zhao H. Hot carrier diffusion in graphene. Physical Review B, 2010, 82 (19): 195414

[127] Zhu J, Cheng X, Liu Y, Wang R, Jiang M, Li D, Lu B, Ren Z. Stimulated Brillouin scattering induced all-optical modulation in graphene microfiber. Photonics Research, 2019, 7(1): 8–13

[128] Wang Y, Zhang F, Tang X, Chen X, Chen Y, Huang W, Liang Z, Wu L, Ge Y, Song Y, Liu J, Zhang D, Li J, Zhang H. All-optical phosphorene phase modulator with enhanced stability under ambient conditions. Laser & Photonics Reviews, 2018, 12(6): 1800016

[129] Koppens F H, Chang D E, García de Abajo F J. Graphene plasmonics: a platform for strong light-matter interactions. Nano Letters, 2011, 11(8): 3370–3377

[130] Ooi K J A, Tan D T H. Nonlinear graphene plasmonics. Proceedings of the Royal Society of London, Series A, 2017, 473(2206): 20170433

Chuyu ZHONG, Junying LI, Hongtao LIN. Graphene-based all-optical modulators[J]. Frontiers of Optoelectronics, 2020, 13(2): 114. Chuyu ZHONG, Junying LI, Hongtao LIN. Graphene-based all-optical modulators[J]. Frontiers of Optoelectronics, 2020, 13(2): 114.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!