Chinese Optics Letters, 2021, 19 (6): 060006, Published Online: Apr. 12, 2021  

Polarization diversity two-dimensional grating coupler on x-cut lithium niobate on insulator Download: 786次

Author Affiliations
1 State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
2 School of Economics and Commerce, South China University of Technology, Guangzhou 510640, China
3 Laboratory of Biomedical Photonics & Engineering, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
4 Department of Physics, East Carolina University, Greenville, North Carolina 27858-4353, USA
5 Life Science Institute and Laboratory of Biomedical Photonics & Engineering, Guangxi Medical University, Nanning 530021, China
Copy Citation Text

Renyou Ge, Hao Li, Ya Han, Lifeng Chen, Jian Xu, Meiyan Wu, Yongqing Li, Yannong Luo, Xinlun Cai. Polarization diversity two-dimensional grating coupler on x-cut lithium niobate on insulator[J]. Chinese Optics Letters, 2021, 19(6): 060006.

References

[1] A. Boes, B. Corcoran, L. Chang, J. Bowers, A. Mitchell. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev., 2018, 12: 1700256.

[2] L. Cai, A. Mahmoud, G. Piazza. Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications. Opt. Express, 2019, 27: 9794.

[3] M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, M. Lončar. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 2017, 4: 1536.

[4] Y. Liu, X. Huang, Z. Li, Y. Kuang, H. Guan, Q. Wei, Z. Fan, Z. Li. TE/TM-pass polarizers based on lateral leakage in a thin film lithium niobate–silicon nitride hybrid platform. Opt. Lett., 2020, 45: 4915.

[5] T. Ding, Y. Zheng, X. Chen. On-chip solc-type polarization control and wavelength filtering utilizing periodically poled lithium niobate on insulator ridge waveguide. J. Lightwave Technol., 2019, 37: 1296.

[6] J.-Y. Chen, Z.-H. Ma, Y. M. Sua, Z. Li, C. Tang, Y.-P. Huang. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica, 2019, 6: 1244.

[7] D. Pohl, M. R. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, R. Grange. An integrated broadband spectrometer on thin-film lithium niobate. Nat. Photon., 2020, 14: 24.

[8] L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, G. Piazza. Acousto-optical modulation of thin film lithium niobate waveguide devices. Photon. Res., 2019, 7: 1003.

[9] M. Xu, M. He, H. Zhang, J. Jian, Y. Pan, X. Liu, L. Chen, X. Meng, H. Chen, Z. Li, X. Xiao, S. Yu, S. Yu, X. Cai. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun., 2020, 11: 3911.

[10] M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, X. Cai. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photon., 2019, 13: 359.

[11] M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, M. Lončar. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 2019, 568: 373.

[12] Y. Qi, Y. Li. Integrated lithium niobate photonics. Nanophotonics, 2020, 9: 1287.

[13] Z. Chen, Y. Ning, Y. Xun. Chirped and apodized grating couplers on lithium niobate thin film. Opt. Mater., 2020, 10: 2513.

[14] J. Jian, P. Xu, H. Chen, M. He, Z. Wu, L. Zhou, L. Liu, C. Yang, S. Yu. High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides. Opt. Express, 2018, 26: 29651.

[15] A. Kar, M. Bahadori, S. Gong, L. L. Goddard. Realization of alignment-tolerant grating couplers for z-cut thin-film lithium niobate. Opt. Express, 2019, 27: 15856.

[16] I. Krasnokutska, R. J. Chapman, J.-L. J. Tambasco, A. Peruzzo. High coupling efficiency grating couplers on lithium niobate on insulator. Opt. Express, 2019, 27: 17681.

[17] Y. Liu, X. Huang, Z. Li, H. Guan, Q. Wei, Z. Fan, W. Han, Z. Li. Efficient grating couplers on a thin film lithium niobate–silicon rich nitride hybrid platform. Opt. Lett., 2020, 45: 6847.

[18] X. Ma, C. Zhuang, R. Zeng, J. J. Coleman, W. Zhou. Polarization-independent one-dimensional grating coupler design on hybrid silicon/LNOI platform. Opt. Express, 2020, 28: 17113.

[19] M. S. Nisar, X. Zhao, A. Pan, S. Yuan, J. Xia. Grating coupler for an on-chip lithium niobate ridge waveguide. IEEE Photon. J., 2016, 9: 6600208.

[20] Z. Ruan, J. Hu, Y. Xue, J. Liu, B. Chen, J. Wang, K. Chen, P. Chen, L. Liu. Metal based grating coupler on a thin-film lithium niobate waveguide. Opt. Express, 2020, 28: 35615.

[21] K. Shuting, R. Zhang, Z. Hao, J. Di, F. Gao, F. Bo, G. Zhang, J. Xu. High-efficiency chirped grating couplers on lithium niobate on insulator. Opt. Lett., 2020, 45: 6651.

[22] Z. Chen, Y. Wang, Y. Jiang, R. Kong, H. Hu. Grating coupler on single-crystal lithium niobate thin film. Opt. Mater., 2017, 72: 136.

[23] I. Krasnokutska, J.-L. J. Tambasco, A. Peruzzo. Nanostructuring of LNOI for efficient edge coupling. Opt. Express, 2019, 27: 16578.

[24] L. He, M. Zhang, A. Shams-Ansari, R. Zhu, C. Wang, L. Marko. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits. Opt. Lett., 2019, 44: 2314.

[25] Y. Luo, Z. Nong, S. Gao, H. Huang, Y. Zhu, L. Liu, L. Zhou, J. Xu, L. Liu, S. Yu, X. Cai. Low-loss two-dimensional silicon photonic grating coupler with a backside metal mirror. Opt. Lett., 2018, 43: 474.

[26] B. Chen, X. Zhang, J. Hu, Y. Zhu, X. Cai, P. Chen, L. Liu. Two-dimensional grating coupler on silicon with a high coupling efficiency and a low polarization-dependent loss. Opt. Express, 2020, 28: 4001.

[27] R. Halir, D. Vermeulen, G. Roelkens. Reducing polarization-dependent loss of silicon-on-insulator fiber to chip grating couplers. IEEE Photon. Technol. Lett., 2010, 22: 389.

[28] W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, E. Pluk. A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires. Opt. Express, 2007, 15: 1567.

[29] D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, T. Douglas, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, D. Englund. Metropolitan quantum key distribution with silicon photonics. Phys. Rev. X, 2018, 8: 021009.

[30] L. Carroll, D. Gerace, I. Cristiani, S. Menezo, L. C. Andreani. Broad parameter optimization of polarization-diversity 2D grating couplers for silicon photonics. Opt. Express, 2013, 21: 21556.

[31] Y. Wang, W. Shi, X. Wang, Z. Lu, M. Caverley, R. Bojko, L. Chrostowski, N. A. F. Jaeger. Design of broadband subwavelength grating couplers with low back reflection. Opt. Lett., 2015, 40: 4647.

Renyou Ge, Hao Li, Ya Han, Lifeng Chen, Jian Xu, Meiyan Wu, Yongqing Li, Yannong Luo, Xinlun Cai. Polarization diversity two-dimensional grating coupler on x-cut lithium niobate on insulator[J]. Chinese Optics Letters, 2021, 19(6): 060006.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!