Photonics Research, 2019, 7 (1): 01000069, Published Online: Feb. 21, 2019   

Optically induced rotation of Rayleigh particles by arbitrary photonic spin Download: 597次

Author Affiliations
1 Advanced Photonics Center, Southeast University, Nanjing 210096, China
2 Department of Electro-Optics and Photonics, University of Dayton, Dayton, Ohio 45469, USA
3 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
4 e-mail: cyp@seu.edu.cn
5 e-mail: qzhan1@udayton.edu
Copy Citation Text

Guanghao Rui, Ying Li, Sichao Zhou, Yusong Wang, Bing Gu, Yiping Cui, Qiwen Zhan. Optically induced rotation of Rayleigh particles by arbitrary photonic spin[J]. Photonics Research, 2019, 7(1): 01000069.

References

[1] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 1986, 11: 288-290.

[2] M. A. El-Sayed. Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc. Chem. Res., 2004, 37: 326-333.

[3] M. A. El-Sayed. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res., 2001, 34: 257-264.

[4] D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, C. Qiu. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci. Appl., 2017, 6: e17039.

[5] D. G. Grier. A revolution in optical manipulation. Nature, 2003, 424: 810-816.

[6] A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, Y. Zhang. Nanometric optical tweezers based on nanostructured substrates. Nat. Photonics, 2008, 2: 365-370.

[7] K. C. Neuman, S. M. Block. Optical trapping. Rev. Sci. Instrum., 2004, 75: 2787-2809.

[8] A. T. O’Neil, I. MacVicar, L. Allen, M. J. Padgett. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett., 2002, 88: 053601.

[9] Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, D. T. Chiu. Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys. Rev. Lett., 2007, 99: 073901.

[10] J. Chen, J. Ng, Z. Lin, C. T. Chan. Optical pulling force. Nat. Photonics, 2011, 5: 531-534.

[11] J. J. Sáenz. Laser tractor beams. Nat. Photonics, 2011, 5: 514-515.

[12] G. Rui, Q. Zhan. Trapping of resonant metallic nanoparticles with engineered vectorial optical field. Nanophotonics, 2014, 3: 351-361.

[13] G. Rui, X. Wang, B. Gu, Q. Zhan, Y. Cui. Manipulation metallic nanoparticle at resonant wavelength using engineered azimuthally polarized optical field. Opt. Express, 2016, 24: 7212-7223.

[14] X. Wang, G. Rui, L. Gong, B. Gu, Y. Cui. Manipulation of resonant metallic nanoparticle using 4Pi focusing system. Opt. Express, 2016, 24: 24143-24152.

[15] G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, A. D. Raisanen. Stable optical lift. Nat. Photonics, 2011, 5: 48-51.

[16] J. Glückstad. Sculpting the object. Nat. Photonics, 2011, 5: 7-8.

[17] M. Li, S. Yan, B. Yao, M. Lei, Y. Yang, J. Min, D. Dan. Trapping of Rayleigh spheroidal particles by highly focused radially polarized beams. J. Opt. Soc. Am. B, 2015, 32: 468-472.

[18] M. Li, S. Yan, B. Yao, Y. Liang, G. Han, P. Zhang. Optical trapping force and torque on spheroidal Rayleigh particles with arbitrary spatial orientations. J. Opt. Soc. Am. A, 2016, 33: 1341-1347.

[19] S. H. Simpson, S. Hanna. Computational study of the optical trapping of ellipsoidal particles. Phys. Rev. A, 2011, 84: 053808.

[20] C. B. Chang, W.-X. Huang, K. H. Lee, H. J. Sung. Optical levitation of a non-spherical particle in a loosely focused Gaussian beam. Opt. Express, 2012, 20: 24068-24084.

[21] J. Wu, Y. Li, D. Lu, Z. Liu, Z. Cheng, L. He. Measurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers. Cryo Lett., 2009, 30: 89-95.

[22] S. Bayoudh, T. Nieminen, N. Heckenberg, H. Rubinsztein-Dunlop. Orientation of biological cells using plane-polarized Gaussian beam optical tweezers. J. Mod. Opt., 2003, 50: 1581-1590.

[23] D. P. Cherney, T. E. Bridges, J. M. Harris. Optical trapping of unilamellar phospholipid vesicles: investigation of the effect of optical forces on the lipid membrane shape by confocal-Raman microscopy. Anal. Chem., 2004, 76: 4920-4928.

[24] S. H. Simpson, S. Hanna. Optical trapping of spheroidal particles in Gaussian beams. J. Opt. Soc. Am. A, 2007, 24: 430-443.

[25] J. Chen, C. Wan, L. Kong, Q. Zhan. Experimental generation of complex optical fields for diffraction limited optical focus with purely transverse spin angular momentum. Opt. Express, 2017, 25: 8966-8974.

[26] J. Chen, C. Wan, L. Kong, Q. Zhan. Tightly focused optical field with controllable photonic spin orientation. Opt. Express, 2017, 25: 19517-19528.

[27] BalanisA., Antenna Theory: Analysis and Design (Wiley-Interscience, 2005).

[28] B. Richards, E. Wolf. Electromagnetic diffraction in optical system II. Structure of the image field in an aplanatic system. Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci., 1959, 253: 358-379.

[29] BornM.WolfE., Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

[30] M. Neugebauer, T. Bauer, A. Aiello, P. Banzer. Measuring the transverse spin density of light. Phys. Rev. Lett., 2015, 114: 063901.

[31] W. Han, Y. Yang, W. Cheng, Q. Zhan. Vectorial optical field generator for the creation of arbitrarily complex fields. Opt. Express, 2013, 21: 20692-20706.

[32] P. C. Chaumet, M. Nieto-Vesperinas. Time-averaged total force on a dipolar sphere in an electromagnetic field. Opt. Lett., 2000, 25: 1065-1067.

[33] B. T. Draine. The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys. J., 1988, 333: 848-872.

[34] LandauL. D.BellJ.KearsleyM.PitaevskiiL.LifshitzE.SykesJ., Electrodynamics of Continuous Media (Elsevier, 1984).

[35] A. Hinojosa-Alvarado, J. C. Gutiérrez-Vega. Geometrical optics calculation of forces and torques produced by a ringed beam on a prolate spheroid. J. Opt. Soc. Am. B, 2010, 27: 1651-1658.

[36] F. G. Mitri. Optical Bessel beam illumination of a subwavelength prolate gold (Au) spheroid coated by a layer of plasmonic material: radiation force, spin and orbital torques. J. Phys. Commun., 2017, 1: 015001.

[37] K. Svoboda, S. M. Block. Optical trapping of metallic Rayleigh particles. Opt. Lett., 1994, 19: 930-932.

[38] S. Albaladejo, M. I. Marqués, M. Laroche, J. J. Sáenz. Scattering forces from the curl of the spin angular momentum of a light field. Phys. Rev. Lett., 2009, 102: 113602.

[39] M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop. Optical torque controlled by elliptical polarization. Opt. Lett., 1998, 23: 1-3.

[40] H. Polaert, G. Gréhan, G. Gouesbet. Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam. Opt. Commun., 1998, 155: 169-179.

[41] J. W. Liaw, Y. S. Chen, M. K. Kuo. Spinning gold nanoparticles driven by circularly polarized light. J. Quant. Spectrosc. Radiat. Transfer, 2016, 175: 46-53.

Guanghao Rui, Ying Li, Sichao Zhou, Yusong Wang, Bing Gu, Yiping Cui, Qiwen Zhan. Optically induced rotation of Rayleigh particles by arbitrary photonic spin[J]. Photonics Research, 2019, 7(1): 01000069.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!