Advanced Photonics, 2019, 1 (1): 014002, Published Online: Feb. 18, 2019   

Semiconductor nanolasers and the size-energy-efficiency challenge: a review Download: 690次

Cun-Zheng Ning 1,2,3,*
Author Affiliations
1 Tsinghua University, Department of Electronic Engineering, Beijing, China
2 Tsinghua University, International Center for Nano-Optoelectronics, Beijing, China
3 Arizona State University, School of Electrical, Computer, and Energy Engineering, Tempe, Arizona, United States
Copy Citation Text

Cun-Zheng Ning. Semiconductor nanolasers and the size-energy-efficiency challenge: a review[J]. Advanced Photonics, 2019, 1(1): 014002.

References

[1] D. A. B. Miller. Device requirements for optical interconnects to silicon chips. Proc. IEEE, 2009, 97(7): 1166-1185.

[2] C. Z. Ning, L. T. Dou, P. D. Yang. Nanoscale bandgap engineering: semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater., 2017, 2: 17070.

[3] C. Z. Ning. Semiconductor nanolasers (Tutorial). Phys. Status Solidi B, 2010, 247(4): 774-788.

[4] C. Z.Ning, “Semiconductor nanowire lasers,” in Semiconductors and Semimetals, Vol. 86, , J. J.Coleman, A. C.Bryce and C.Jagadish, Eds., pp. 455486, Academic Press, Burlington (2012).

[5] Q. Zhang, et al.. High quality whispering gallery mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater., 2016, 26(34): 6238-6245.

[6] D. Liang, J. E. Bowers. Recent progress in lasers on silicon. Nat. Photonics, 2010, 4(8): 511-517.

[7] K. Ohashi, et al.. On-chip optical interconnect. Proc. IEEE, 2009, 97(7): 1186-1198.

[8] Z. Wang, et al.. Novel light source integration approaches for silicon photonics. Laser Photonics Rev., 2017, 11(4): 1700063.

[9] D. Liang, et al.. Heterogeneous silicon light sources for datacom applications. Opt. Fiber Technol., 2018, 44: 43-52.

[10] A. Y. Liu, et al.. High performance continuous wave 1.3  μm quantum dot lasers on silicon. Appl. Phys. Lett., 2014, 104(4): 041104.

[11] T. Wang, et al.. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt. Express, 2011, 19(12): 11381-11386.

[12] S. Chen, et al.. Electrically pumped long lifetime continuous-wave III-V quantum-dot lasers directly grown on silicon substrates. Nat. Photonics, 2016, 10(5): 307-311.

[13] R. Chen, et al.. Nanolasers grown on silicon. Nat. Photonics, 2011, 5: 170-175.

[14] A. T. Martensson, et al.. Epitaxial III-V nanowires on silicon. Nano Lett., 2004, 4(10): 1987-1990.

[15] K. Tomioka, M. Yoshimura, T. Fukui. A III–V nanowire channel on silicon for high-performance vertical transistors. Nature, 2012, 488: 189-192.

[16] M. Borg, et al.. Vertical III-V nanowire device integration on Si(100). Nano Lett., 2014, 14(4): 1914-1920.

[17] Y. Cohin, et al.. Growth of vertical GaAs nanowires on an amorphous substrate via a fiber-textured Si platform. Nano Lett., 2013, 13(6): 2743-2747.

[18] B. Mayer, et al.. Monolithically integrated high-β nanowire lasers on silicon. Nano Lett., 2016, 16(1): 152-156.

[19] F. Schuster, et al.. Site-controlled growth of monolithic InGaAs/InP quantum well nanopillar lasers on silicon. Nano Lett., 2017, 17(4): 2697-2702.

[20] H. Kim, et al.. Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links. Nano Lett., 2016, 16(3): 1833-1839.

[21] H. T. Nguyen, et al.. p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111). Nano Lett., 2011, 11(5): 1919-1924.

[22] K. Ding, et al.. Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects. Laser Photonics Rev., 2015, 9(5): 488-497.

[23] A.Benner, “Optical interconnect opportunities in supercomputers and high end computing,” in OFC/NFOEC Conf. Proc., IEEE, paper OTu2B.4 (2012).

[24] H. Soda, et al.. GaInAsP/InP surface emitting injection lasers. Jpn. J. Appl. Phys., 1979, 18(12): 2329-2330.

[25] P. Moser, et al.. 56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s. Electron. Lett., 2012, 48(20): 1292-1294.

[26] P. Moser, et al.. Energy efficient 40 Gbit/s transmission with 850 nm VCSELs at 108 fJ/bit dissipated heat. Electron. Lett., 2013, 49(10): 666-667.

[27] D. Bimberg, A. Larsson, A. Joel. Faster, more frugal, greener VCSELs. Compd. Semicond., 2014, 22: 34-39.

[28] S. L. McCall, et al.. Whispering-gallery mode microdisk lasers. Appt. Phys. Lett., 1992, 60(3): 289-291.

[29] R. E. Slusher, et al.. Threshold characteristics of semiconductor microdisk lasers. Appl. Phys. Lett., 1993, 63(10): 1310-1312.

[30] Y. Zhang, et al.. Photonic crystal disk lasers. Opt. Lett., 2011, 36(14): 2704-2706.

[31] Q. Zhang, et al.. Room-temperature near-infrared high-Q perovskite whispering gallery planar nanolasers. Nano Lett., 2014, 14(10): 5995-6001.

[32] O. Painter, et al.. Two-dimensional photonic band-gap defect mode laser. Science, 1999, 284(5421): 1819-1821.

[33] M. Nomura, et al.. Room temperature continuous-wave lasing in photonic crystal nanocavity. Opt. Express, 2006, 14(13): 6308-6315.

[34] K. Nozaki, S. Kita, T. Baba. Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. Opt. Express, 2007, 15(12): 7506-7514.

[35] H.-G. Park, et al.. Electrically driven single-cell photonic crystal laser. Science, 2004, 305(5689): 1444-1447.

[36] H. Altug, D. Englund, J. Vuckovic. Ultrafast photonic crystal nanocavity laser. Nat. Phys., 2006, 2: 484-488.

[37] S. Matsuo, et al.. High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted. Nat. Photonics, 2010, 4(9): 648-654.

[38] K.-Y. Jeong, et al.. Electrically driven nanobeam laser. Nat. Commun., 2013, 4: 2822.

[39] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 1987, 58(20): 2059-2062.

[40] S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 1987, 58(23): 2486-2489.

[41] A. V. Maslov, C. Z. Ning. Reflection of guided modes in a semiconductor nanowire laser. Appl. Phys. Lett., 2003, 83(6): 1237-1239.

[42] M. H. Huang, et al.. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292(5523): 1897-1899.

[43] J. C. Johnson, et al.. Single gallium nitride nanowire lasers. Nat. Mater., 2002, 1: 106-110.

[44] X. F. Duan, et al.. Single-nanowire electrically driven lasers. Nature, 2003, 421: 241-245.

[45] A. H. Chin. Near-infrared semiconductor subwavelength-wire lasers. Appl. Phys. Lett., 2006, 88(16): 163115.

[46] D. Saxena, et al.. Optically pumped room-temperature GaAs nanowire lasers. Nat. Photonics, 2013, 7: 963-968.

[47] B. Mayer, et al.. Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature. Nat. Commun., 2013, 4: 2931.

[48] S. Eaton, et al.. Semiconductor nanowire lasers. Nat. Rev. Mater., 2016, 1: 16028.

[49] C. Z.Ning, “Nanolasers: current status of the trailblazer of synergetics,” in Self-Organization in Complex Systems: The Past, Present, and Future of Synergetics, , A.Pelster and G.Wunner, Eds., pp 109128, Springer, Cham (2016).

[50] C. Couteau, et al.. Nanowire lasers. Nanophotonics, 2015, 4(1): 90-107.

[51] M. A Zimmler, et al.. Optically pumped nanowire lasers. Semicond. Sci. Technol., 2010, 25(02): 024001.

[52] R. Yan, D. Gargas, P. D. Yang. Nanowire photonics. Nat. Photonics, 2009, 3: 569-576.

[53] Y. Ma, et al.. Semiconductor nanowire lasers. Adv. Opt. Photonics, 2013, 5(3): 216-273.

[54] K. Ding, C. Z. Ning. Metallic subwavelength-cavity semiconductor nanolaser. Light Sci. Appl., 2012, 1(7): e20.

[55] Y. Ye, et al.. Monolayer excitonic laser. Nat. Photonics, 2015, 9: 733-737.

[56] S. Wu, et al.. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature, 2015, 520: 69-72.

[57] Y. Li, et al.. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat. Nanotechnol., 2017, 12: 987-992.

[58] X. Liu, et al.. Strong light-matter coupling in two-dimensional atomic crystals. Nat. Photonics, 2015, 9: 30-34.

[59] O. Salehzadeh, et al.. Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Lett., 2015, 15(8): 5302-5306.

[60] J. C. Reed, et al.. Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter. Nano Lett., 2015, 15(3): 1967-1971.

[61] D. J. Bergman, M. I. Stockman. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett., 2003, 90(2): 027402.

[62] A. V. Maslov, C. Z. Ning. Size reduction of a semiconductor nanowire laser by using metal coating. Proc. SPIE, 2007, 6468: 646801.

[63] M. T. Hill, et al.. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt. Express, 2009, 17(13): 11107-11112.

[64] M. A. Noginov, et al.. Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium. Opt. Express, 2008, 16(2): 1385-1392.

[65] R. F. Oulton, et al.. Plasmon lasers at deep subwavelength scale. Nature, 2009, 461: 629-632.

[66] M. P. Nezhad, K. Tetz, Y. Fainman. Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. Opt. Express, 2004, 12(17): 4072-4079.

[67] S. Maier. Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides. Opt. Commun., 2006, 258(2): 295-299.

[68] M. T. Hill, et al.. Lasing in metallic-coated nanocavities. Nat. Photonics, 2007, 1: 589-594.

[69] M. A. Noginov, et al.. Demonstration of a spaser-based nanolaser. Nature, 2009, 460: 1110-1112.

[70] N. I. Zheludev, et al.. Lasing spaser. Nat. Photonics, 2008, 2: 351-354.

[71] M. P. Nezhad, et al.. Room-temperature subwavelength metallo-dielectric lasers. Nat. Photonics, 2010, 4: 395-399.

[72] I. De Leon, P. Berini. Amplification of long-range surface plasmons by a dipolar gain medium. Nat. Photonics, 2010, 4: 382-387.

[73] Y. J. Lu, et al.. Pasmonic nanolaser using epitaxially grown silver film. Science, 2012, 337(6093): 450-453.

[74] W. Zhu, et al.. Surface plasmon polariton laser based on a metallic trench Fabry-Perot resonator. Sci. Adv., 2017, 3(10): e1700909.

[75] M. J. Marell, et al.. Plasmonic distributed feedback lasers at telecommunications wavelengths. Opt. Express, 2011, 19(16): 15109-15118.

[76] E. K. Keshmarzi, R. Tait, P. Berini. Single-mode surface plasmon distributed feedback lasers. Nanoscale, 2018, 10(13): 5914-5922.

[77] K. Ding, et al.. Room temperature continuous wave lasing in deep-subwavelength metallic-cavities under electrical injection. Phys. Rev. B, 2012, 85(4): 041301(R).

[78] K. Yu, A. Lakhani, M. C. Wu. Subwavelength metal-optic semiconductor nanopatch lasers. Opt. Express, 2010, 18(9): 8790-8799.

[79] R. Perahia, et al.. Suface-plasmon mode hybridization in subwavelength microdisk lasers. Appl. Phys. Lett., 2009, 95(20): 201114.

[80] S. H. Kwon, et al.. Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity. Nano Lett., 2010, 10(9): 3679-3683.

[81] M. Khajavikhan, et al.. Thresholdless nanoscale coaxial lasers. Nature, 2012, 482: 204-207.

[82] T. P. H. Sidiropoulos, et al.. Ultrafast plasmonic nanowire lasers near the surface plasmon frequency. Nat. Phys., 2014, 10: 870-876.

[83] K. Ding, et al.. Record performance of electrical injection subwavelength metallic-cavity semiconductor lasers at room temperature. Opt. Express, 2013, 21(4): 4728-4733.

[84] K. Ding, C. Z. Ning. Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers. Semicond. Sci. Technol., 2013, 28(12): 124002.

[85] P. Ginzburg, A. V. Zayats. Linewidth enhancement in spasers and plasmonic nanolasers. Opt. Express, 2013, 21(2): 2147-2153.

[86] S. Gwo, C. K. Shih. Semiconductor plasmonic nanolasers: current status and perspectives. Rep. Prog. Phys., 2016, 79: 086501.

[87] R. Ma, et al.. Plasmon lasers: coherent light source at molecular scales. Laser Photonics Rev., 2013, 7(1): 1-21.

[88] Q.Gu and Y.Fainman, Semiconductor Nanolasers, Cambridge University Press, Cambridge (2017).

[89] M. T. Hill, M. C. Gather. Advances in small lasers. Nat. Photonics, 2014, 8: 908-918.

[90] M. I. Stockman. The spaser as a nanoscale quantum generator and ultrafast amplifier. J. Opt., 2010, 12(2): 024004.

[91] P. Berini, I. De Leon. Surface plasmon–polariton amplifiers and lasers. Nat. Photonics, 2012, 6: 16-24.

[92] D. Li, C. Z. Ning. Interplay of various loss mechanisms and ultimate size limit of a surface plasmon polariton semiconductor nanolaser. Opt. Express, 2012, 20(15): 16348-16357.

[93] E. K. Lau, et al.. Enhanced modulation bandwidth of nanocavity light emitting devices. Opt. Express, 2009, 17(10): 7790-7799.

[94] K. A. Shore. Modulation bandwidth of metal-clad semiconductor nanolasers with cavity-enhanced spontaneous emission. Electron. Lett., 2010, 46(25): 1688-1689.

[95] T. Suhr, et al.. Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission. Opt. Express, 2010, 18(11): 11230-11241.

[96] C.-Y. A. Ni, S. L. Chuang. Theory of high-speed nanolasers and nanoLEDs. Opt. Express, 2012, 20(15): 16450-16470.

[97] D. B. Li, C. Z. Ning. Peculiar features of confinement factors in a metal-semiconductor waveguide. Appl. Phys. Lett., 2010, 96(18): 181109.

[98] D. Li, C. Z. Ning. Giant modal gain, amplified surface plasmon polariton propagation, and slowing down of energy velocity in a metal-semiconductor metal structure. Phys. Rev., 2009, B80: 153304.

[99] A. Chernikov, et al.. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat. Photonics, 2015, 9: 466-470.

[100] L. Meckbach, T. Stroucken, S. W. Koch. Giant excitation induced bandgap renormalization in TMDC monolayers. Appl. Phys. Lett., 2018, 112: 061104.

[101] F. Lohof, et al.. Prospects and limitations of transition-metal dichalcogenide laser gain materials.

[102] Z. Wang. Excitonic complexes and optical gain in two-dimensional molybdenum ditelluride well below Mott transition.

Cun-Zheng Ning. Semiconductor nanolasers and the size-energy-efficiency challenge: a review[J]. Advanced Photonics, 2019, 1(1): 014002.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!