Matter and Radiation at Extremes, 2024, 9 (1): 015603, Published Online: Mar. 27, 2024  

Resistive field generation in intense proton beam interaction with solid targets

Author Affiliations
1 Department of Physics, National University of Defense Technology, Hunan, China
2 ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Madrid, Spain
3 Department of Nuclear Science and Technology, National University of Defense Technology, Hunan, China
Abstract
The Brown–Preston–Singleton (BPS) stopping power model is added to our previously developed hybrid code to model ion beam–plasma interaction. Hybrid simulations show that both resistive field and ion scattering effects are important for proton beam transport in a solid target, in which they compete with each other. When the target is not completely ionized, the self-generated resistive field effect dominates over the ion scattering effect. However, when the target is completely ionized, this situation is reversed. Moreover, it is found that Ohmic heating is important for higher current densities and materials with high resistivity. The energy fraction deposited as Ohmic heating can be as high as 20%–30%. Typical ion divergences with half-angles of about 5°–10° will modify the proton energy deposition substantially and should be taken into account.

W. Q. Wang, J. J. Honrubia, Y. Yin, X. H. Yang, F. Q. Shao. Resistive field generation in intense proton beam interaction with solid targets[J]. Matter and Radiation at Extremes, 2024, 9(1): 015603.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!