量子电子学报, 2017, 34 (3): 379, 网络出版: 2017-06-09   

基于微纳光纤模式干涉仪和石墨烯薄膜的氨气传感器

Ammonia sensor based on microfiber modal interferometer and graphene film
作者单位
暨南大学光子技术研究院, 广东 广州 510632
引用该论文

盛苗苗, 范鹏程, 于波, 黄赟赟, 李杰, 关柏鸥. 基于微纳光纤模式干涉仪和石墨烯薄膜的氨气传感器[J]. 量子电子学报, 2017, 34(3): 379.

SHENG Miaomiao, FAN Pengcheng, YU Bo, HUANG Yunyun, LI Jie, GUAN Baiou. Ammonia sensor based on microfiber modal interferometer and graphene film[J]. Chinese Journal of Quantum Electronics, 2017, 34(3): 379.

参考文献

[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 30(5696): 666-669.

[2] Zhang S, Shao Y Y, Liao H G, et al. Polyelectrolyte-induced reduction of exfoliated graphite oxide: A facile route to synthesis of soluble graphene nanosheets[J]. ACS Nano, 2011, 5(3): 1785-1791.

[3] Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907.

[4] Wang F, Zhang Y B, Tian C S, et al. Gate-variable optical transitions in graphene[J]. Science, 2008, 320(5873): 206-209.

[5] Li X L, Zhang G Y, Bai X D, et al. Highly conducting graphene sheets and Langmuir-Blodgett films[J]. Nature Nanotechnology, 2008, 3(9): 538-542.

[6] Zhang J, Liao G Z, Jin S S, et al. All-fiber-optic temperature sensor based on reduced graphene oxide[J]. Laser Phys. Lett., 2014, 11(3): 035901.

[7] Dash J N, Jha R. On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance[J]. Plasmonics, 2015, 10(5): 1123-1131.

[8] Batumalay M, Harun S W, Ahmad F, et al. Tapered plastic optical fiber coated with graphene for uric acid detection[J]. IEEE Sensors Journal, 2014, 14(5): 1704-1709.

[9] Mishra S K, Tripathi S N, Choudhary V, et al. Surface plasmon resonance-based fiber optic methane gas sensor utilizing graphene-carbon nanotubes-poly (methyl methacrylate) hybrid nanocomposite[J]. Plasmonics, 2015, 10(5): 1147-1157.

[10] Stoller M D, Park S J, Zhu Y W, et al. Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10): 3498-3502.

[11] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100): 282-286.

[12] Bai Y, He Y, et al. Transmission gaps in grapheme superlattices with triple periodic potential patterns[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2016, 33(2): 231-23(in Chinese).

[13] Ye S W, Yuan F, Zou X H, et al. High-speed optical phase modulator based on graphene-silicon waveguide[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 23(1): 1-5.

[14] Zhao J Q, Zheng Z J, Ouyang D Q, et al. 70 W graphene-oxide passively Q-switched thulium-doped double-clad fiber laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 23(1): 0900207.

[15] Liu B, Li J, Sun L P, et al. Refractive index sensing characteristics of microdroplet-etched micro-nano fiber Fabry-Perot resonator[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2016, 33(3): 356-362 (in Chinese).

[16] Dash J N, Jha R. Temperature insensitive PCF interferometer coated with graphene oxide tip sensor[J]. IEEE Photonics Technology Letters, 2016, 28(9): 1006-1009.

[17] Sun J, Muruganathan M, Mizuta H. Room temperature detection of individual molecular physisorption using suspended bilayer graphene[J]. Science Advances, 2016, 2(4): e1501518.

[18] Ahmad H, Rahman M T, Sakeh S N A, et al. Humidity sensor based on microfiber resonator with reduced graphene oxide[J]. Optik-International Journal for Light and Electron Optics, 2015, 127(5): 3158-3161.

[19] Yao B C, Wu Y, Cheng Y, et al. Graphene-based microfiber gas sensor[C]. Proc. SPIE, 2012, 8421: 2013416.

[20] Yao B C, Wu Y, Cheng Y, et al. All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide[J]. Sensors and Actuators B: Chemical, 2014, 194 (4): 142-148.

[21] Zhang A Q, Wu Y, Yao B C, et al. Optimization study on graphene-coated microfiber Bragg grating structures for ammonia gas sensing[J]. Photonic Sensors, 2015, 5(1): 84-90.

[22] Snyder A W, Love J D. Optical Waveguide Theory[M]. Chapman and Hall, 1983.

[23] Leenaerts O, Partoens B, Peeters F M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study[J]. Physical Review B, 2008, 77(12): 125416-125421.

[24] Ratinac K R, Yang W, Ringer S P, et al. Toward ubiquitous environmental gas sensors-capitalizing on the promise of graphene[J]. Environmental Science and Technology, 2010, 44(4): 1167-1176.

[25] Saffarzadeh A. Modeling of gas adsorption on graphene nanoribbons[J]. Journal of Applied Physics, 2010, 107(11): 114309.

[26] Sun L P, Li J, Tan Y Z, et al. Bending effect on modal interference in a fiber taper and sensitivity enhancement for refractive index measurement[J]. Optics Express, 2013, 21(22): 26714-26720.

盛苗苗, 范鹏程, 于波, 黄赟赟, 李杰, 关柏鸥. 基于微纳光纤模式干涉仪和石墨烯薄膜的氨气传感器[J]. 量子电子学报, 2017, 34(3): 379. SHENG Miaomiao, FAN Pengcheng, YU Bo, HUANG Yunyun, LI Jie, GUAN Baiou. Ammonia sensor based on microfiber modal interferometer and graphene film[J]. Chinese Journal of Quantum Electronics, 2017, 34(3): 379.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!