Photonics Research, 2017, 5 (3): 03000219, Published Online: Oct. 9, 2018  

Wavelength-swept fiber laser based on bidirectional used linear chirped fiber Bragg grating Download: 803次

Author Affiliations
Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
Copy Citation Text

Lin Wang, Minggui Wan, Zhenkun Shen, Xudong Wang, Yuan Cao, Xinhuan Feng, Bai-ou Guan. Wavelength-swept fiber laser based on bidirectional used linear chirped fiber Bragg grating[J]. Photonics Research, 2017, 5(3): 03000219.

References

[1] T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, R. Huber. Multi-MHz retinal OCT. Biomed. Opt. Express, 2013, 4: 1890-1908.

[2] C. Y. Ryu, C. S. Hong. Development of fiber Bragg grating sensor system using wavelength-swept fiber laser. Smart Mater. Struct., 2002, 11: 468-473.

[3] D. P. Zhou, Z. G. Qin, W. H. Li, L. Chen, X. Y. Bao. Distributed vibration sensing with time-resolved optical frequency-domain reflectometry. Opt. Express, 2012, 20: 13138-13145.

[4] S. S. Jyu, S. F. Liu, W. W. Hsiang, Y. Lai. Fiber dispersion measurement with a swept-wavelength pulse light source. IEEE Photon. Technol. Lett., 2010, 22: 598-600.

[5] S. H. Yun, C. Boudoux, G. J. Tearney, B. E. Bouma. High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. Opt. Lett., 2003, 28: 1981-1983.

[6] R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, K. Hsu. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Opt. Express, 2005, 13: 3513-3528.

[7] R. Huber, M. Wojtkowski, J. G. Fujimoto. Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography. Opt. Express, 2006, 14: 3225-3237.

[8] R. Huber, D. C. Adler, J. G. Fujimoto. Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Opt. Lett., 2006, 31: 2975-2977.

[9] M. Y. Jeon, J. Zhang, Q. Wang, Z. P. Chen. High-speed and wide bandwidth Fourier domain mode-locked wavelength-swept laser with multiple SOAs. Opt. Express, 2008, 16: 2547-2554.

[10] W. Wieser, T. Klein, D. C. Adler, F. Trepanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, R. Huber. Extended coherence length megahertz FDML and its application for anterior segment imaging. Biomed. Opt. Express, 2012, 3: 2647-2657.

[11] S. Yamashita, M. Asano. Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning. Opt. Express, 2006, 14: 9299-9306.

[12] Y. Takubo, S. Yamashita. In vivo OCT imaging using wavelength-swept fiber laser based on dispersion tuning. IEEE Photon. Technol. Lett., 2012, 24: 979-981.

[13] Y. Takubo, S. Yamashita. High-speed dispersion-tuned wavelength-swept fiber laser using a reflective SOA and a chirped FBG. Opt. Express, 2013, 21: 5130-5139.

[14] M. G. Wan, L. Wang, F. Li, Y. Cao, X. D. Wang, X. H. Feng, B. O. Guan, P. K. A. Wai. Rapid, k-space linear wavelength scanning laser source based on recirculating frequency shifter. Opt. Express, 2016, 24: 27614-27621.

[15] G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. Savory, F. Forghieri, P. Poggiolini. Ultra-narrow-spacing 10-channel 1.12  Tb/s D-WDM long-haul transmission over uncompensated SMF and NZDSF. IEEE Photon. Technol. Lett., 2010, 22: 1419-1421.

[16] S. Moon, D. Y. Kim. Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source. Opt. Express, 2006, 14: 11575-11584.

[17] J. Xu, C. Zhang, J. Xu, K. K. Wong, K. K. Tsia. Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch. Opt. Lett., 2014, 39: 622-625.

[18] T. J. Ahn, Y. Park, J. Azana. Ultrarapid optical frequency-domain reflectometry based upon dispersion-induced time stretching: principle and applications. IEEE J. Sel. Top. Quantum, 2012, 18: 148-165.

[19] S. Tozburun, M. Siddiqui, B. J. Vakoc. A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography. Opt. Express, 2014, 22: 3414-3424.

[20] K. Chan, C. Shu. Compensated dispersion tuning in harmonically mode-locked fiber laser. Appl. Phys. Lett., 1999, 75: 891-893.

[21] BrennanJ. F.HernadezE.ValentiJ. A.SinhaP. G.MatthewsM. R.ElderD. E.BeauchesneG. A.ByrdC. H., “Wide-bandwidth chirped fiber Bragg gratings with low delay ripple amplitude,” U.S. patentUS6741773B2 (May25, 2004).

[22] K. Ennser, M. N. Zervas, R. I. Laming. Optimization of apodized linearly chirped fiber gratings for optical communications. IEEE J. Quantum Electron., 1998, 34: 770-778.

[23] Z. Wang, Q. Lin, Y. T. Jian, L. L. Liu, C. Q. Wu. Dispersion measurement of the semiconductor optical amplifiers. Proc. SPIE, 2014, 9233: 92331J.

Lin Wang, Minggui Wan, Zhenkun Shen, Xudong Wang, Yuan Cao, Xinhuan Feng, Bai-ou Guan. Wavelength-swept fiber laser based on bidirectional used linear chirped fiber Bragg grating[J]. Photonics Research, 2017, 5(3): 03000219.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!