Photonics Research, 2017, 5 (5): 05000436, Published Online: Aug. 31, 2017  

Blue-detuned optical atom trapping in a compact plasmonic structure Download: 701次

Author Affiliations
1 State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Department of Physics, Peking University, Beijing 100871, China
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
3 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
Copy Citation Text

Zhao Chen, Fan Zhang, Qi Zhang, Juanjuan Ren, He Hao, Xueke Duan, Pengfei Zhang, Tiancai Zhang, Ying Gu, Qihuang Gong. Blue-detuned optical atom trapping in a compact plasmonic structure[J]. Photonics Research, 2017, 5(5): 05000436.

References

[1] ArimondoE.PhillipsW. D.StrumiaF., Laser Manipulation of Atoms and Ions (North Holland, 1991).

[2] W. D. Phillips. Laser cooling and trapping of neutral atoms. Rev. Mod. Phys., 1998, 70: 721-741.

[3] J. Fortagh, C. Zimmermann. Magnetic microtraps for ultracold atoms. Rev. Mod. Phys., 2007, 79: 235-289.

[4] J. P. Yin. Realization and research of optically-trapped quantum degenerate gases. Phys. Rep., 2006, 430: 1-116.

[5] R. Grimm, M. Weidemuller, Y. B. Ovchinnikov. Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys., 2000, 42: 1-39.

[6] S. Kato, S. Chonan, T. Aoki. High-numerical-aperture microlensed tip on an air-clad optical fiber. Opt. Lett., 2014, 39: 773-775.

[7] P. F. Zhang, G. Li, T. C. Zhang. Subwavelength optical dipole trap for neutral atoms using a microcapillary tube tip. J. Phys. B, 2017, 50: 045005.

[8] P. Xu, X. He, J. Wang, M. Zhan. Trapping a single atom in a blue detuned optical bottle beam trap. Opt. Lett., 2010, 35: 2164-2166.

[9] M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang, L. Isenhower, M. Saffman. Two-dimensional lattice of blue-detuned atom traps using a projected Gaussian beam array. Phys. Rev. A, 2013, 88: 013420.

[10] P. Zemanek, C. J. Foot. Atomic dipole trap formed by blue detuned strong Gaussian standing wave. Opt. Commun., 1998, 146: 119-123.

[11] N. T. Phuong Lan, D. T. Thuy Nga, N. A. Viet. Trapping cold atoms using surface plasmons with phase singularities generated by evanescent Bessel beams. J. Phys. Conf. Ser., 2015, 627: 012017.

[12] M. Hammes, D. Rychtarik, B. Engeser, H. C. Nagerl, R. Grimm. Evanescent-wave trapping and evaporative cooling of an atomic gas at the crossover to two dimensions. Phys. Rev. Lett., 2003, 90: 173001.

[13] T. Nieddu, V. Gokhroo, S. N. Chormaic. Optical nanofibers and neutral atoms. J. Opt., 2016, 18: 053001.

[14] E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, A. Rauschenbeutel. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys. Rev. Lett., 2010, 104: 203603.

[15] A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroute, M. Pototschnig, T. Thiele. Demonstration of a state-insensitive, compensated nanofiber trap. Phys. Rev. Lett., 2012, 109: 033603.

[16] N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, J. Laurat. Large bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide. Phys. Rev. Lett., 2016, 117: 133603.

[17] C. R. Bennett, J. B. kirk, M. Babiker. Theory of evanescent mode atomic mirrors with a metallic layer. Phys. Rev. A, 2001, 63: 033405.

[18] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 2003, 424: 824-830.

[19] Y. J. Xiong, J. Y. Chen, B. Wiley, Y. N. Xia, Y. D. Yin, Z. Y. Li. Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process. Nano Lett., 2005, 5: 1237-1242.

[20] S. Link, M. A. El-Sayed. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B, 1999, 103: 8410-8426.

[21] Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, X. Zhang. Focusing surface plasmons with a plasmonic lens. Nano Lett., 2005, 5: 1726-1729.

[22] H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn. Silver nanowires as surface plasmon resonators. Phys. Rev. Lett., 2005, 95: 257403.

[23] T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, P. A. Wolf. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 1998, 391: 667-669.

[24] K. A. Willets, R. P. Van Duyne. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 2007, 58: 267-297.

[25] D. E. Chang, J. D. Thompsin, H. Park, V. Vuletic, A. S. Zibrov, P. Zoller, M. D. Lukin. Trapping and manipulation of isolated atoms using nanoscale plasmonic structures. Phys. Rev. Lett., 2009, 103: 123004.

[26] B. Murphy, L. V. Hau. Electro-optical nanotraps for neutral atoms. Phys. Rev. Lett., 2009, 102: 033003.

[27] M. Gullans, T. Tiecke, D. E. Chang, J. Feist, J. Thompson, J. Cirac, P. Oller, M. D. Lukin. Nanoplasmonic lattices for ultracold atoms. Phys. Rev. Lett., 2012, 109: 235309.

[28] A. Gonzalez, C. Hung, D. E. Chang, J. Cirac, H. Kimble. Subwavelength vacuum lattices and atom-atom interactions in two-dimensional photonic crystals. Nat. Photonics, 2015, 9: 320-325.

[29] H. Tamura, T. Unakami, J. He, Y. Miyamoto, K. Nakagawa. Highly uniform holographic microtrap arrays for single atom trapping using a feedback optimization of in-trap fluorescence measurements. Opt. Express, 2016, 24: 8132-8141.

[30] T. N. Bandi, V. G. Minogin, S. N. Chormaic. Atom microtraps based on near-field Fresnel diffraction. Phys. Rev. A, 2008, 78: 013410.

[31] C. Garcia-Segundo, H. Yan, M. S. Zhan. Atom trap with surface plasmon and evanescent field. Phys. Rev. A, 2007, 75: 030902.

[32] L. Lin, L. B. Hande, A. Roberts. Resonant nanometric cross-shaped apertures: single apertures versus periodic Arrays. Appl. Phys. Lett., 2009, 95: 201116.

[33] P. B. Johnson, R.-W. Christy. Optical constants of the noble metals. Phys. Rev. B, 1972, 6: 4370-4379.

[34] F. Zhao, J. Zeng, M. Arnob, P. Sun, J. Q. P. Motwani, M. Gheewala, C. Li, A. Paterson, U. Strych, B. Raja, R. Willson, J. Wolfe, T. Lee, W. Shih. Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots. Nanoscale, 2014, 6: 8199-8207.

[35] M. Luo, Q. Liu. Extraordinary transmission of a thick film with a periodic structure consisting of strongly dispersive materials. J. Opt. Soc. Am. B, 2011, 28: 629-636.

[36] M. Daly, V. G. Truong, C. F. Phelan, K. Deasy, S. N. Chormaic. Nanostructured optical nanofibers for atom trapping. New J. Phys., 2014, 16: 053052.

[37] C. Lacroute, K. Choi, A. Goban, D. Alton, D. Ding, N. Stern, H. J. Kimble. A state-insensitive, compensated nanofiber trap. New J. Phys., 2012, 14: 023056.

[38] D. E. Chang, K. Sinha, J. M. Taylor, H. J. Kimble. Trapping atoms using nanoscale quantum vacuum forces. Nat. Commun., 2014, 5: 4343.

[39] C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, S. Slama. Plasmonically tailored micropotentials for ultracold atoms. Nat. Photonics, 2011, 5: 494-498.

[40] J. P. Burke, S. Chu, G. Bryant, C. J. Williams, P. S. Julienne. Designing neutral-atom nanotraps with integrated optical waveguide. Phys. Rev. A, 2002, 65: 043411.

[41] Z. Chai, X. Hu, H. Yang, Q. Gong. Chip-integrated all-optical diode based on nonlinear plasmonic nanocavities covered with multicomponent nanocomposite. Nanophotonics, 2017, 6: 329-339.

[42] F. Y. Gan, Y. Wang, C. Sun, G. Zhang, H. Li, J. Chen, Q. Gong. Widely tuning surface plasmon polaritons with laser-induced bubbles. Adv. Opt. Mater., 2017, 5: 1600545.

[43] H. Gao, J. Henzie, T. Odom. Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays. Nano Lett., 2006, 6: 2104-2108.

Zhao Chen, Fan Zhang, Qi Zhang, Juanjuan Ren, He Hao, Xueke Duan, Pengfei Zhang, Tiancai Zhang, Ying Gu, Qihuang Gong. Blue-detuned optical atom trapping in a compact plasmonic structure[J]. Photonics Research, 2017, 5(5): 05000436.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!