激光与光电子学进展, 2020, 57 (13): 130101, 网络出版: 2020-07-09   

冰晶粒子对量子干涉雷达探测性能的影响 下载: 889次

Influences of Ice Crystal Particles on the Detection Performance of Quantum Interference Radar
作者单位
1 西安邮电大学通信与信息工程学院, 陕西 西安 710121
2 西北工业大学电子信息学院, 陕西 西安 710072
3 西安电子科技大学综合业务网国家重点实验室, 陕西 西安 710071
引用该论文

聂敏, 张怡心, 杨光, 张美玲, 孙爱晶, 裴昌幸. 冰晶粒子对量子干涉雷达探测性能的影响[J]. 激光与光电子学进展, 2020, 57(13): 130101.

Min Nie, Yixin Zhang, Guang Yang, Meiling Zhang, Aijing Sun, Changxing Pei. Influences of Ice Crystal Particles on the Detection Performance of Quantum Interference Radar[J]. Laser & Optoelectronics Progress, 2020, 57(13): 130101.

参考文献

[1] 王宏强, 刘康, 程永强, 等. 量子雷达及其研究进展[J]. 电子学报, 2017, 45(2): 492-500.

    Wang H Q, Liu K, Cheng Y Q, et al. The advances in quantum radar[J]. Acta Electronica Sinica, 2017, 45(2): 492-500.

[2] 江涛, 孙俊. 量子雷达探测目标的基本原理与进展[J]. 中国电子科学研究院学报, 2014, 9(1): 10-16.

    Jiang T, Sun J. The principle and development of quantum radar detection target[J]. Journal of China Academy of Electronics and Information Technology, 2014, 9(1): 10-16.

[3] Jiang K B, Lee H, Gerry C C, et al. Super-resolving quantum radar: coherent-state sources with homodyne detection suffice to beat the diffraction limit[J]. Journal of Applied Physics, 2013, 114(19): 193102.

[4] 吴琼, 柏业超, 张兴敢. 干涉量子雷达测量方法性能分析[J]. 南京大学学报(自然科学), 2016, 52(5): 939-945.

    Wu Q, Bai Y C, Zhang X G. Performance analysis of measurement methods for interference quantum radar[J]. Journal of Nanjing University (Natural Sciences), 2016, 52(5): 939-945.

[5] Allen EH, Karageorgis M. Radarsystems and methods using entangled quantum particles: US7375802[P/OL].2008-05-20[2019-07-29]. https:∥patents.glgoo.top/patent/US7375802B2/en.

[6] Myers J M. Speaking of sensing in the language of quantum mechanics[J]. Proceedings of SPIE, 2007, 6573: 657302.

[7] LanzagortaM. 量子雷达[M]. 周万幸, 吴鸣亚, 胡明春, 等, 译. 北京: 电子工业出版社2013: 54- 59.

    LanzagortaM. Quantum radar[M]. Zhou W X, Wu M Y, Hu M C, et al., Transl. Beijing: Publishing House of Electronics Industry, 2013: 54- 59.

[8] 肖怀铁, 刘康, 范红旗. 量子雷达及其目标探测性能综述[J]. 国防科技大学学报, 2014, 36(6): 140-145.

    Xiao H T, Liu K, Fan H Q. Overview of quantum radar and target detection performance[J]. Journal of National University of Defense Technology, 2014, 36(6): 140-145.

[9] Gallagher M W, Connolly P J, Whiteway J, et al. An overview of the microphysical structure of cirrus clouds observed during EMERALD-1[J]. Quarterly Journal of the Royal Meteorological Society, 2006, 131(607): 1143-1169.

[10] 孙贤明. 大气中离散随机介质的波传播和散射特性研究[D]. 西安: 西安电子科技大学, 2007: 21- 30.

    Sun XM. Study on wave propagation and scattering characteristics of atmospheric discrete random media[D]. Xi'an:Xidian University, 2007: 21- 30.

[11] 徐世龙, 胡以华, 赵楠翔, 等. 金属目标原子晶格结构对其量子雷达散射截面的影响[J]. 物理学报, 2015, 64(15): 154203.

    Xu S L, Hu Y H, Zhao N X, et al. Impact of metal target's atom lattice structure on its quantum radar cross-section[J]. Acta Physica Sinica, 2015, 64(15): 154203.

[12] 李旭, 聂敏, 杨光, 等. 基于纠缠的量子雷达生存性策略及性能仿真[J]. 光子学报, 2015, 44(11): 1127002.

    Li X, Nie M, Yang G, et al. The strategy and performance simulation of quantum entangled radar's survivability[J]. Acta Photonica Sinica, 2015, 44(11): 1127002.

[13] 徐泽华, 李伟, 许强, 等. 基于分光链路模拟的曲面量子雷达散射截面研究[J]. 空军工程大学学报(自然科学版), 2019, 20(1): 90-95.

    Xu Z H, Li W, Xu Q, et al. Research on scattering section of surface quantum radar based on simulation of spectral link[J]. Journal of Air Force Engineering University (Natural Science Edition), 2019, 20(1): 90-95.

[14] 王书, 任益充, 饶瑞中, 等. 大气闪烁对相干态量子干涉雷达探测性能的影响[J]. 中国激光, 2018, 45(8): 0810002.

    Wang S, Ren Y C, Rao R Z, et al. Influence of atmospheric scintillation on detection performance of coherent state quantum interferometric radar[J]. Chinese Journal of Lasers, 2018, 45(8): 0810002.

[15] 王书, 任益充, 饶瑞中, 等. 大气损耗对量子干涉雷达的影响机理[J]. 物理学报, 2017, 66(15): 150301.

    Wang S, Ren Y C, Rao R Z, et al. Influence of atmosphere attenuation on quantum interferometric radar[J]. Acta Physica Sinica, 2017, 66(15): 150301.

[16] Yang P, Bi L, Baum B A, et al. Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm[J]. Journal of the Atmospheric Sciences, 2013, 70(1): 330-347.

[17] 张琳. 卷云的辐射传输与散射特性研究[D]. 西安: 西安电子科技大学, 2010: 23- 24.

    ZhangL. Study on the radiative transmission and scattering properties of cirrus clouds[D]. Xi'an:Xidian University, 2010: 23- 24.

[18] . 107(D13): AAC 7[J]. Key J R. Parameterization of shortwave ice cloud optical properties for various particle habits. Journal of Geophysical Research: Atmospheres, 2002.

[19] 李铁飞, 李伟, 杨峰, 等. 卫星量子通信的光子偏振误差影响与补偿研究[J]. 量子电子学报, 2015, 32(6): 678-685.

    Li T F, Li W, Yang F, et al. Polarization error and compensation in quantum communication using satellites[J]. Chinese Journal of Quantum Electronics, 2015, 32(6): 678-685.

[20] 魏安海, 赵卫, 韩彪, 等. 基于Fournier-Forand和Henyey-Greenstein体积散射函数的水中光脉冲传输仿真分析[J]. 光学学报, 2013, 33(6): 0601003.

    Wei A H, Zhao W, Han B, et al. Simulative study of optical pulse propagation in water based on Fournier-Forand and Henyey-Greenstein volume scattering functions[J]. Acta Optica Sinica, 2013, 33(6): 0601003.

[21] Strohbehn J, Clifford S. Polarization and angle-of-arrival fluctuations for a plane wave propagated through a turbulent medium[J]. IEEE Transactions on Antennas and Propagation, 1967, 15(3): 416-421.

[22] 唐守荣, 聂敏, 杨光, 等. 空间尘埃等离子体对量子卫星通信性能的影响[J]. 光子学报, 2017, 46(12): 1206002.

    Tang S R, Nie M, Yang G, et al. Influence of space dusty plasmas on the performance of quantum satellite communication[J]. Acta Photonica Sinica, 2017, 46(12): 1206002.

[23] 李凤娇, 邹雪峰, 崔亮, 等. 便携式偏振纠缠量子光源[J]. 激光与光电子学进展, 2019, 56(9): 092701.

    Li F J, Zou X F, Cui L, et al. Portable polarization-entangled quantum photon source[J]. Laser & Optoelectronics Progress, 2019, 56(9): 092701.

[24] 史鹏, 赵士成, 李文东, 等. 水下量子密钥分配的误码率和成码率[J]. 中国海洋大学学报, 2017, 47(4): 114-120.

    Shi P, Zhao S C, Li W D, et al. Bit error rate and key generation rate for underwater quantum key distribution[J]. Periodical of Ocean University of China, 2017, 47(4): 114-120.

[25] Pan X M, Sheng X Q. Accurate and efficient evaluation of spatial electromagnetic responses of large scale targets[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(9): 4746-4753.

[26] Hufford G. Amodel for the complex permittivity of ice at frequencies below 1 THz[J]. International Journal of Infrared and Millimeter Waves, 1991, 12(7): 677-682.

聂敏, 张怡心, 杨光, 张美玲, 孙爱晶, 裴昌幸. 冰晶粒子对量子干涉雷达探测性能的影响[J]. 激光与光电子学进展, 2020, 57(13): 130101. Min Nie, Yixin Zhang, Guang Yang, Meiling Zhang, Aijing Sun, Changxing Pei. Influences of Ice Crystal Particles on the Detection Performance of Quantum Interference Radar[J]. Laser & Optoelectronics Progress, 2020, 57(13): 130101.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!