强激光与粒子束, 2018, 30 (5): 052002, 网络出版: 2018-05-04  

纳米结构泡沫金冲击响应的分子动力学模拟

Molecular dynamics simulations of shock response for nano-structure foamed gold
作者单位
中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
引用该论文

刘伟, 段晓溪, 杨为明, 刘浩, 章欢, 叶青, 孙亮, 王哲斌, 江少恩. 纳米结构泡沫金冲击响应的分子动力学模拟[J]. 强激光与粒子束, 2018, 30(5): 052002.

Liu Wei, Duan Xiaoxi, Yang Weiming, Liu Hao, Zhang Huan, Ye Qing, Sun Liang, Wang Zhebin, Jiang Shaoen. Molecular dynamics simulations of shock response for nano-structure foamed gold[J]. High Power Laser and Particle Beams, 2018, 30(5): 052002.

参考文献

[1] Hall T, Batani D, Nazarov W, et al. Recent advances in laser-plasma experiments using foams[J]. Laser and Particle Beams, 2002, 20: 303-316.

[2] Boade R R. Compression of porous copper by shock waves[J]. Journal of Applied Physics, 1968, 39(12): 5693-5702.

[3] Rosen M D, Hammer J H. Analytic expressions for optimal inertial-confinement-fusion hohlraum wall density and wall loss[J]. Physical Review E, 2005, 72: 056403.

[4] Young P E, Rosen M D, Hammer J H, et al. Demonstration of the density dependence of X-ray flux in a laser-driven hohlraum[J]. Physical Review Letters, 2008, 101: 035001.

[5] Trunin R F, Zhernokletov M V, Simakov G V, et al. Shock compression of highly porous samples of copper, iron, nickel and their equation of state[C]//Shock Compression of Condense Matter. 1998: 83-86.

[6] Wu Q, Jing F. Unified thermodynamic equation of state for porous materials in a wide pressure range[J]. Applied Physics Letters, 1995, 67(1): 49-51.

[7] Geng Huayun, Wu Qiang, Tan Hua, et al. Extension of the Wu-Jing equation of state(EOS) for highly porous materials: Thermoelectron based theoretical model[J]. Journal of Applied Physics, 2002, 92(10): 5924-5929.

[8] Jian W R, Li B, Wang L, et al. Shock response of open-cell nanoporous Cu foams: Effects of porosity and specific surface area[J]. Journal of Applied Physics, 2015, 118: 165902.

[9] Huang L, Han W Z, An Q, et al. Shock-induced consolidation and spallation of Cu nanopowders[J]. Journal of Applied Physics, 2012, 111: 013508.

[10] Zhang L, Ding Y, Lin Z, et al. Demonstration of enhancement of X-ray flux with foam gold compared to solid gold[J]. Nuclear Fusion, 2016, 56: 036006.

[11] Plompton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117: 1-19.

[12] Johnson A. Analytic nearest-neighbor model for fcc metals[J]. Physical Review B, 1988, 37(8): 3924-3931.

[13] Luo S N, An Q, Germann T C, et al. Shock-induced spall in solid and liquid Cu at extreme strain rates[J]. Journal of Applied Physics, 2009, 106: 013502.

[14] Tan X, Niu G, Li K, et al. Preparation of monolithic foamed gold by seed-mediated growth[J]. Rare Metal Materials and Engineering, 2012, 40(1):169-172.

[15] Olsson P A T. Transverse resonant properties of strained gold nanowires[J]. Journal of Applied Physics, 2010, 108: 034318.

[16] Zhakhovskii V V, Inogamov N A, Petrov Y V, et al. Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials[J]. Applied Surface Science, 2009, 255: 9592-9596.

[17] Yokoo M, Kawai N, Nakamura K G, et al. Ultrahigh-pressure scales for gold and platinum at pressures up to 550 GPa[J]. Physical Review B, 2009, 80: 104114.

[18] Grochola G, Russo S P, Snook I K. On fitting a gold embedded atom method potential using the force matching method[J]. The Journal of Chemical Physics, 2005, 123: 204719.

[19] Zhou X W, Johnson R A, Wadley H N G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers[J]. Physical Review B, 2004, 69: 144113.

[20] Adams J B, Foiles S M, Wolfer W G. Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the embedded atom method[J]. J Mater Res, 1988, 4(1): 102-112.

[21] Ackland G J, Tichy G, Vitek V, et al. Simple N-body potentials for the noble metals and nickel[J]. Philosophical Magazine A, 1987, 56(6): 735-756.

[22] Liao Y, Xiang M, Zeng X, et al. Molecular dynamics studies of the roles of microstructure and thermal effects in spallation of aluminum[J]. Mechanics of Materials, 2015, 84: 12-27.

[23] Yokoo M, Kawai N, Nakamura K G, et al. Hugoniot measurement of gold at high pressures of up to 580 GPa[J]. Applied Physics Letters, 2008, 92: 051901.

[24] Hodge A M, Biener J, Hayes J R, et al. Scaling equation for yield strength of nanoporous open-cell foams[J]. Acta Materialia, 2007, 55: 1343-1349.

刘伟, 段晓溪, 杨为明, 刘浩, 章欢, 叶青, 孙亮, 王哲斌, 江少恩. 纳米结构泡沫金冲击响应的分子动力学模拟[J]. 强激光与粒子束, 2018, 30(5): 052002. Liu Wei, Duan Xiaoxi, Yang Weiming, Liu Hao, Zhang Huan, Ye Qing, Sun Liang, Wang Zhebin, Jiang Shaoen. Molecular dynamics simulations of shock response for nano-structure foamed gold[J]. High Power Laser and Particle Beams, 2018, 30(5): 052002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!