激光与光电子学进展, 2019, 56 (1): 010004, 网络出版: 2019-08-01   

太赫兹量子级联激光器阵列耦合的研究进展 下载: 1497次

Research Progress on Array Coupling of Terahertz Quantum Cascade Lasers
作者单位
中国工程物理研究院激光聚变研究中心等离子体物理重点实验室, 四川 绵阳 621999
引用该论文

罗佳文, 王雪敏, 沈昌乐, 蒋涛, 湛治强, 邹蕊矫, 彭丽萍, 黎维华, 吴卫东. 太赫兹量子级联激光器阵列耦合的研究进展[J]. 激光与光电子学进展, 2019, 56(1): 010004.

Jiawen Luo, Xuemin Wang, Changle Shen, Tao Jiang, Zhiqiang Zhan, Ruijiao Zou, Liping Peng, Weihua Li, Weidong Wu. Research Progress on Array Coupling of Terahertz Quantum Cascade Lasers[J]. Laser & Optoelectronics Progress, 2019, 56(1): 010004.

参考文献

[1] Ferguson B, Zhang X C. Materials for terahertz science and technology[J]. Nature Materials, 2002, 1(1): 26-33.

[2] Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928.

[3] 姚建铨. 太赫兹技术及其应用[J]. 重庆邮电大学学报(自然科学版), 2010, 22(6): 703-707.

    Yao J Q. Introduction of THz-wave and its applications[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2010, 22(6): 703-707.

[4] 杨旻蔚, 季海兵, 谭智勇, 等. 成像与成谱联动的太赫兹分析检测仪[J]. 光学学报, 2016, 36(6): 0611004.

    Yang M W, Ji H B, Tan Z Y, et al. Terahertz joint analyzer with imaging and spectrum detection[J]. Acta Optica Sinica, 2016, 36(6): 0611004.

[5] 李孟奇, 谭智勇, 邱付成, 等. 基于太赫兹量子级联激光器的反射式快速扫描成像[J]. 光学学报, 2017, 37(6): 0611004.

    Li M Q, Tan Z Y, Qiu F C, et al. Fast reflective scanning imaging based on terahertz quantum-cascade laser[J]. Acta Optica Sinica, 2017, 37(6): 0611004.

[6] 刘影, 赵国忠, 申彦春. 连续太赫兹波偏振成像检测[J]. 中国激光, 2016, 43(1): 0111001.

    Liu Y, Zhao G Z, Shen Y C. Polarization imaging detection based on the continuous terahertz wave[J]. Chinese Journal of Lasers, 2016, 43(1): 0111001.

[7] Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser[J]. Science, 1994, 264(5158): 553-556.

[8] Kohler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser[J]. Nature, 2002, 417: 156-159.

[9] Scalari G, Ajili L, Faist J. Far-infrared (λ≃87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K[J]. Applied Physics Letters, 2003, 82(19): 3165-3167.

[10] Liu H C, Wächter M, Ban D, et al. Effect of doping concentration on the performance of terahertz quantum-cascade lasers[J]. Applied Physics Letters, 2005, 87(14): 141102.

[11] Degl'Innocenti R, Shah Y D, Jessop D S, et al. . Hollow metallic waveguides integrated with terahertz quantum cascade lasers[J]. Optics Express, 2014, 22(20): 24439-24449.

[12] Han Y J, Li L H, Zhu J, et al. Silver-based surface plasmon waveguide for terahertz quantum cascade lasers[J]. Optics Express, 2018, 26(4): 3814-3827.

[13] Zhu H, Zhu H Q, Wang F F, et al. Terahertz master-oscillator power-amplifier quantum cascade laser with a grating coupler of extremely low reflectivity[J]. Optics Express, 2018, 26(2): 1942-1953.

[14] Belkin M A, Capasso F. New frontiers in quantum cascade lasers: high performance room temperature terahertz sources[J]. Physica Scripta, 2015, 90(11): 118002.

[15] Wienold M, Roben B, Schrottke L, et al. High-temperature, continuous-wave operation of terahertz quantum-cascade lasers with metal-metal waveguides and third-order distributed feedback[J]. Optics Express, 2014, 22(3): 3334-3348.

[16] Wang X M, Shen C L, Jiang T, et al. High-power terahertz quantum cascade lasers with~0.23 W in continuous wave mode[J]. AIP Advances, 2016, 6(7): 075210.

[17] Fathololoumi S, Dupont E. Chan C W I, et al. Terahertz quantum cascade lasers operating up to~200 K with optimized oscillator strength and improved injection tunneling[J]. Optics Express, 2012, 20(4): 3866-3876.

[18] Li L H, Chen L, Zhu J X, et al. Terahertz quantum cascade lasers with >1 W output powers[J]. Electronics Letters, 2014, 50(4): 309-311.

[19] Li L H, Zhu J X, Chen L, et al. The MBE growth and optimization of high performance terahertz frequency quantum cascade lasers[J]. Optics Express, 2015, 23(3): 2720-2729.

[20] 孙京南, 孙文军, 赵立萍, 等. 影响AlGaN/GaN量子级联激光器性能的因素研究[J]. 光学学报, 2012, 32(2): 0214002.

    Sun J N, Sun W J, Zhao L P, et al. Study of the factors influencing the properties of AlGaN/GaN quantum cascade lasers[J]. Acta Optica Sinica, 2012, 32(2): 0214002.

[21] Lee H K, Chung K S, Yu J S, et al. Thermal analysis of buried heterostructure quantum cascade lasers for long-wavelength infrared emission using 2D anisotropic heat-dissipation model[J]. Physica Status Solidi (a), 2009, 206(2): 356-362.

[22] Lee H K, Yu J S. Thermal analysis of short wavelength InGaAs/InAlAs quantum cascade lasers[J]. Solid-State Electronics, 2010, 54(8): 769-776.

[23] Lee H K, Chung K S, Yu J S. Thermal analysis of InP-based quantum cascade lasers for efficient heat dissipation[J]. Applied Physics B, 2008, 93(4): 779-786.

[24] Chaparala S C, Xie F, Caneau C, et al. Design guidelines for efficient thermal management of mid-infrared quantum cascade lasers[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1(12): 1975-1982.

[25] Pierscinski K, Pierscinska D. Iwi ska M, et al. Investigation of thermal properties of mid-infrared AlGaAs/GaAs quantum cascade lasers [J]. Journal of Applied Physics, 2012, 112(4): 043112.

[26] Krall M, Bachmann D, Deutsch C, et al. All-electrical thermal monitoring of terahertz quantum cascade lasers[J]. IEEE Photonics Technology Letters, 2014, 26(14): 1470-1473.

[27] Bowden B, Harrington J A, Mitrofanov O. Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings[J]. Applied Physics Letters, 2008, 93(18): 181104.

[28] Vitiello M S, Xu J H, Kumar M, et al. High efficiency coupling of terahertz micro-ring quantum cascade lasers to the low-loss optical modes of hollow metallic waveguides[J]. Optics Express, 2011, 19(2): 1122-1130.

[29] Vitiello M S, Xu J H, Beltram F, et al. Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide[J]. Journal of Applied Physics, 2011, 110(6): 063112.

[30] Navarro-Cia M, Vitiello M S, Bledt C M, et al. Terahertz wave transmission in flexible polystyrene-lined hollow metallic waveguides for the 2.5~5 THz band[J]. Optics Express, 2013, 21(20): 23748-23755.

[31] Wallis R. Degl'Innocenti R, Jessop D S, et al. Efficient coupling of double-metal terahertz quantum cascade lasers to flexible dielectric-lined hollow metallic waveguides[J]. Optics Express, 2015, 23(20): 26276-26287.

[32] Danylov A A, Waldman J, Goyette T M, et al. Transformation of the multimode terahertz quantum cascade laser beam into a Gaussian, using a hollow dielectric waveguide[J]. Applied Optics, 2007, 46(22): 5051-5055.

[33] Patimisco P, Spagnolo V, Vitiello M S, et al. Coupling external cavity mid-IR quantum cascade lasers with low loss hollow metallic/dielectric waveguides[J]. Applied Physics B, 2012, 108(2): 255-260.

[34] Sampaolo A, Patimisco P, Kriesel J M, et al. Single mode operation with mid-IR hollow fibers in the range 5.1~10.5 μm[J]. Optics Express, 2015, 23(1): 195-204.

[35] Patimisco P, Sampaolo A, Giglio M, et al. Hollow core waveguide as mid-infrared laser modal beam filter[J]. Journal of Applied Physics, 2015, 118(11): 113102.

[36] Kirch J D, Chang C C, Boyle C, et al. 5.5 W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers[J]. Applied Physics Letters, 2015, 106(6): 061113.

[37] Lyakh A, Maulini R, Tsekoun A, et al. Continuous wave operation of buried heterostructure 4.6 μm quantum cascade laser Y-junctions and tree arrays[J]. Optics Express, 2014, 22(1): 1203-1208.

[38] Wang L, Zhang J C, Jia Z W, et al. Phase-locked array of quantum cascade lasers with an integrated Talbot cavity[J]. Optics Express, 2016, 24(26): 30275-30281.

[39] de Naurois G M, Carras M, Simozrag B, et al. . Coherent quantum cascade laser micro-stripe arrays[J]. AIP Advances, 2011, 1(3): 032165.

[40] Botez D, Peterson G. Modes of phase-locked diode-laser arrays of closely spaced antiguides[J]. Electronics Letters, 1988, 24(16): 1042-1044.

[41] Chen K L, Wang S. Single-lobe symmetric coupled laser arrays[J]. Electronics Letters, 1985, 21(8): 347-349.

[42] Katz J, Margalit S, Yariv A. Diffraction coupled phase-locked semiconductor laser array[J]. Applied Physics Letters, 1983, 42(7): 554-556.

[43] Ackley D E. Single longitudinal mode operation of high power multiple-stripe injection lasers[J]. Applied Physics Letters, 1983, 42(2): 152-154.

[44] Kao T Y, Hu Q, Reno J L. Phase-locked arrays of surface-emitting terahertz quantum-cascade lasers[J]. Applied Physics Letters, 2010, 96(10): 101106.

[45] Kao T Y, Hu Q, Reno J L. Perfectly phase-matched third-order distributed feedback terahertz quantum-cascade lasers[J]. Optics Letters, 2012, 37(11): 2070-2072.

[46] Bosco L, Bonzon C, Ohtani K, et al. A patch-array antenna single-mode low electrical dissipation continuous wave terahertz quantum cascade laser[J]. Applied Physics Letters, 2016, 109(20): 201103.

[47] De Freez R K, Bossert D J, Yu N, et al. . Spectral and picosecond temporal properties of flared guide Y-coupled phase-locked laser arrays[J]. Applied Physics Letters, 1988, 53(24): 2380-2382.

[48] Ho N, Phillips M C, Qiao H, et al. Single-mode low-loss chalcogenide glass waveguides for the mid-infrared[J]. Optics Letters, 2006, 31(12): 1860-1862.

[49] Tsay C, Toor F, Gmachl C F, et al. Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits[J]. Optics Letters, 2010, 35(20): 3324-3326.

[50] Tsay C, Mujagic E, Madsen C K, et al. Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides[J]. Optics Express, 2010, 18(15): 15523-15530.

[51] Chen H T, Lu H, Azad A K, et al. Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays[J]. Optics Express, 2008, 16(11): 7641-7648.

[52] Miyamaru F, Hangyo M. Finite size effect of transmission property for metal hole arrays in subterahertz region[J]. Applied Physics Letters, 2004, 84(15): 2742-2744.

[53] Gerhard M, Theuer M, Beigang R. Coupling into tapered metal parallel plate waveguides using a focused terahertz beam[J]. Applied Physics Letters, 2012, 101(4): 041109.

[54] Kim S H, Lee E S, Ji Y B, et al. Improvement of THz coupling using a tapered parallel-plate waveguide[J]. Optics Express, 2010, 18(2): 1289-1295.

[55] Iwaszczuk K, Andryieuski A, Lavrinenko A, et al. Terahertz field enhancement to the MV/cm regime in a tapered parallel plate waveguide[J]. Optics Express, 2012, 20(8): 8344-8355.

罗佳文, 王雪敏, 沈昌乐, 蒋涛, 湛治强, 邹蕊矫, 彭丽萍, 黎维华, 吴卫东. 太赫兹量子级联激光器阵列耦合的研究进展[J]. 激光与光电子学进展, 2019, 56(1): 010004. Jiawen Luo, Xuemin Wang, Changle Shen, Tao Jiang, Zhiqiang Zhan, Ruijiao Zou, Liping Peng, Weihua Li, Weidong Wu. Research Progress on Array Coupling of Terahertz Quantum Cascade Lasers[J]. Laser & Optoelectronics Progress, 2019, 56(1): 010004.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!