光学学报, 2021, 41 (1): 0106003, 网络出版: 2021-02-23   

空分复用光纤研究综述 下载: 2728次特邀综述

Review of Space Division Multiplexing Fibers
涂佳静 1,*李朝晖 2,3,**
作者单位
1 暨南大学信息科学技术学院, 广东 广州 510632
2 中山大学光电材料与技术国家重点实验室, 广东 广州 510275
3 南方海洋科学与工程广东省实验室, 广东 珠海 519000
引用该论文

涂佳静, 李朝晖. 空分复用光纤研究综述[J]. 光学学报, 2021, 41(1): 0106003.

Jiajing Tu, Zhaohui Li. Review of Space Division Multiplexing Fibers[J]. Acta Optica Sinica, 2021, 41(1): 0106003.

参考文献

[1] Li T Y. Lightwave telecommunication[J]. Physics Today, 1985, 38(5): 24-31.

[2] Saitoh K, Matsuo S. Multicore fiber technology[J]. Journal of Lightwave Technology, 2016, 34(1): 55-66.

[3] Essiambre R J, Kramer G, Winzer P J, et al. Capacity limits of optical fiber networks[J]. Journal of Lightwave Technology, 2010, 28(4): 662-701.

[4] Wang J, Gray S, Walton D, et al. Fiber fuse in high power optical fiber[J]. Proceedings of SPIE, 2008, 7134: 71342E.

[5] Desurvire E B. Capacity demand and technology challenges for lightwave systems in the next two decades[J]. Journal of Lightwave Technology, 2006, 24(12): 4697-4710.

[6] MoriokaT. New generation optical infrastructure technologies: “EXAT initiative” towards 2020 and beyond[C]∥2009 14th OptoElectronics and Communications Conference, July 13-17, 2009, Vienna, Austria. New York: IEEE Press, 2009: 1- 2.

[7] Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres[J]. Nature Photonics, 2013, 7(5): 354-362.

[8] Li G F, Bai N, Zhao N B, et al. Space-division multiplexing: the next frontier in optical communication[J]. Advances in Optics and Photonics, 2014, 6(4): 413-487.

[9] Mizuno T, Miyamoto Y. High-capacity dense space division multiplexing transmission[J]. Optical Fiber Technology, 2017, 35: 108-117.

[10] . E102-[J]. Awaji Y. Review of space-division multiplexing technologies in optical communications. IEICE Transactions on Communications, 2019, B(1): 1-16.

[11] Winzer P J. Making spatial multiplexing a reality[J]. Nature Photonics, 2014, 8(5): 345-348.

[12] 裴丽, 王建帅, 郑晶晶, 等. 空分复用光纤的特性及其应用研究[J]. 红外与激光工程, 2018, 47(10): 1002001.

    Pei L, Wang J S, Zheng J J, et al. Research on specialty and application of space-division-multiplexing fiber[J]. Infrared and Laser Engineering, 2018, 47(10): 1002001.

[13] Saitoh K, Matsuo S. Multicore fibers for large capacity transmission[J]. Nanophotonics, 2013, 2: 441-454.

[14] Sillard P, Bigot-Astruc M, Molin D. Few-mode fibers for mode-division-multiplexed systems[J]. Journal of Lightwave Technology, 2014, 32(16): 2824-2829.

[15] Sasaki Y, Takenaga K, Matsuo S, et al. Few-mode multicore fibers for long-haul transmission line[J]. Optical Fiber Technology, 2017, 35: 19-27.

[16] Saitoh K, Koshiba M, Takenaga K, et al. Crosstalk and core density in uncoupled multicore fibers[J]. IEEE Photonics Technology Letters, 2012, 24(21): 1898-1901.

[17] SaitohK, KoshibaM, TakenagaK, et al.Homogeneous and heterogeneous multi-core fibers[C]∥2012 IEEE Photonics Society Summer Topical Meeting Series, July 9-11, 2012, Seattle, WA, USA.New York: IEEE Press, 2012: 210- 211.

[18] Koshiba M, Saitoh K, Kokubun Y. Heterogeneous multi-core fibers: proposal and design principle[J]. IEICE Electronics Express, 2009, 6(2): 98-103.

[19] Tu J, Saitoh K, Koshiba M, et al. Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber[J]. Optics Express, 2012, 20(14): 15157-15170.

[20] HayashiT. Multi-core fibers for space division multiplexing[M] ∥Handbook of Optical Fibers. Singapore: Springer Singapore, 2019: 1- 47.

[21] Tu J J, Saitoh K, Koshiba M, et al. Optimized design method for bend-insensitive heterogeneous trench-assisted multi-core fiber with ultra-low crosstalk and high core density[J]. Journal of Lightwave Technology, 2013, 31(15): 2590-2598.

[22] TakaraH, SanoA, KobayashiT, et al. ( 12 SDM/222 WDM/456Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency[C]∥ 2012European Conference on Optical Communication, September 16-20, 2012, Amsterdam, Netherlands. Washington, D.C.: Optical Society of America, 2012: Th.3.C.1.

[23] Sano A, Takara H, Kobayashi T, et al. 409-Tb/s+409-Tb/s crosstalk suppressed bidirectional MCF transmission over 450 km using propagation-direction interleaving[J]. Optics Express, 2013, 21(14): 16777-16783.

[24] SakaguchiJ, Puttnam BJ, KlausW, et al. 19-core fiber transmission of 19×100×172-Gb/s SDM-WDM-PDM-QPSK signals at 305 Tb/s[C]∥ 2012 Optical Fiber Communication Conference, March 4-8, 2012, Los Angeles, California, USA. Washington, D.C.: Optical Society of America, 2012: PDP5C. 1.

[25] Puttnam BJ, Luís RS, KlausW, et al.2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb[C]∥2015 European Conference on Optical Communication (ECOC), September 27 - October 1, 2015, Valencia, Spain.New York: IEEE Press, 2015: 1- 3.

[26] AmmaY, SasakiY, TakenagaK, et al. High-density multi-core fiber with heterogeneous core arrangement[C]∥ 2015 Optical Fiber Communication Conference, March 9-14, 2015, San Francisco, California, USA. Washington, D.C.: Optical Society of America, 2015: Th4C. 4.

[27] MizunoT, ShibaharaK, OnoH, et al. 32-core dense SDM unidirectional transmission of PDM-16QAM signals over 1600 km using crosstalk-managed single-mode heterogeneous multicore transmission line[C]∥2016 Optical Fiber Communications Conference and Exhibition (OFC), March 20-24, 2016, Anaheim, CA, USA. Washington, D.C.: Optical Society of America, 2016: Th5C. 3.

[28] Xia C, Bai N, Ozdur I, et al. Supermodes for optical transmission[J]. Optics Express, 2011, 19(17): 16653-16664.

[29] Ho K P, Kahn J M. Statistics of group delays in multimode fiber with strong mode coupling[J]. Journal of Lightwave Technology, 2011, 29(21): 3119-3128.

[30] Arik S O, Kahn J M, Ho K P. MIMO signal processing for mode-division multiplexing: an overview of channel models and signal processing architectures[J]. IEEE Signal Processing Magazine, 2014, 31(2): 25-34.

[31] RyfR, SierraA, Essiambre RJ, et al. 1200-km 6 × 6 MIMO mode-multiplexed transmission over 3-core microstructured fiber[C]∥ 2011 European Conference on Optical Communication and Exhibition, September 18-22, 2011, Geneva, Switzerland. Washington, D.C.: Optical Society of America, 2011: Th.13.C.1.

[32] RyfR, Essiambre RJ, Gnauck AH, et al. Space-division multiplexed transmission over 4200-km 3-core microstructured fiber[C]∥OFC/NFOEC, March 4-8, 2012, Los Angeles, CA, USA. Washington, D.C.: Optical Society of America, 2012: PDP5C. 2.

[33] RyfR, Fontaine NK, GuanB, et al.1705-km transmission over coupled-core fibre supporting 6 spatial modes[C]∥2014 The European Conference on Optical Communication (ECOC), September 21-25, 2014, Cannes, France.New York: IEEE Press, 2014: 1- 3.

[34] Hayashi T, Taru T, Shimakawa O, et al. Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber[J]. Optics Express, 2011, 19(17): 16576-16592.

[35] Koshiba M, Saitoh K, Takenaga K, et al. Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory[J]. Optics Express, 2011, 19(26): B102-B111.

[36] Takenaga K, Arakawa Y, Tanigawa S, et al. An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction[J]. IEICE Transactions on Communications, 2011, 94(2): 409-416.

[37] Koshiba M, Saitoh K, Takenaga K, et al. Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers[J]. IEEE Photonics Journal, 2012, 4(5): 1987-1995.

[38] OkamotoK. Fundamentals of optical waveguides[M]. 2nd ed. London: Elsevier Inc, 2006.

[39] Ye F H, Tu J J, Saitoh K, et al. Design of homogeneous trench-assisted multi-core fibers based on analytical model[J]. Journal of Lightwave Technology, 2016, 34(18): 4406-4416.

[40] Ye F H, Tu J J, Saitoh K, et al. Wavelength-dependence of inter-core crosstalk in homogeneous multi-core fibers[J]. IEEE Photonics Technology Letters, 2016, 28(1): 27-30.

[41] Ye F, Tu J, Saitoh K, et al. Simple analytical expression for crosstalk estimation in homogeneous trench-assisted multi-core fibers[J]. Optics Express, 2014, 22(19): 23007-23018.

[42] Tu J J, Long K P, Saitoh K. An efficient core selection method for heterogeneous trench-assisted multi-core fiber[J]. IEEE Photonics Technology Letters, 2016, 28(7): 810-813.

[43] Xie X Q, Tu J J, Zhou X, et al. Design and optimization of 32-core rod/trench assisted square-lattice structured single-mode multi-core fiber[J]. Optics Express, 2017, 25(5): 5119-5132.

[44] Takenaga K, Arakawa Y, Sasaki Y, et al. A large effective area multi-core fiber with an optimized cladding thickness[J]. Optics Express, 2011, 19(26): B543-B550.

[45] Matsuo S, Takenaga K, Arakawa Y, et al. Large-effective-area ten-core fiber with cladding diameter of about 200 μm[J]. Optics Letters, 2011, 36(23): 4626-4628.

[46] Zhang W D, Huang L G, Wei K Y, et al. Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave[J]. Optics Express, 2016, 24(10): 10376-10384.

[47] Han Y, Liu Y G, Wang Z, et al. Controllable all-fiber generation/conversion of circularly polarized orbital angular momentum beams using long period fiber gratings[J]. Nanophotonics, 2018, 7(1): 287-293.

[48] Han Y, Liu Y G, Huang W, et al. Generation of linearly polarized orbital angular momentum modes in a side-hole ring fiber with tunable topology numbers[J]. Optics Express, 2016, 24(15): 17272-17284.

[49] Bigot-AstrucM, Trinel JB, MaertenH, et al. Weakly-coupled 6-LP-mode fiber with low differential mode attenuation[C]∥Optical Fiber Communication Conference (OFC) 2019, San Diego, California. Washington, D.C.: Optical Society of America, 2019: M1E. 3.

[50] Bigot AM, MolinD, Jongh KD, et al. Next-generation multimode fibers for space division multiplexing[C]∥ 2017 Advanced Photonics Congress, July 24-27, 2017, Zurich, Switzerland. Washington, D.C.: Optical Society of America, 2017: NeM3B. 4.

[51] MaL, Jiang SL, Du JB, et al. Ring-assisted 7-LP-mode fiber with ultra-low Inter-mode crosstalk[C]∥Asia Communications and Photonics Conference, November 2-5, 2016, Wuhan, China. Washington, D.C.: Optical Society of America, 2016: AS4A. 5.

[52] Ge DW, Li JH, Zhu JL, et al. Design of a weakly-coupled ring-core FMF and demonstration of 6-mode 10-km IM/DD transmission[C]∥2018 Optical Fiber Communications Conference and Exposition (OFC), March 11-15, 2018, San Diego, CA, USA. Washington, D.C.: Optical Society of America, 2018: W4K. 3.

[53] Tu J, Saitoh K, Takenaga K, et al. Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay[J]. Optics Express, 2014, 22(4): 4329-4341.

[54] Sasaki Y, Amma Y, Takenaga K, et al. Few-mode multicore fiber with 36 spatial modes (three modes (LP01, LP11a, LP11b)×12 cores)[J]. Journal of Lightwave Technology, 2015, 33(5): 964-970.

[55] Sillard P, Molin D, Bigot A M, et al. Low-differential-mode-group-delay 9-LP-mode fiber[J]. Journal of Lightwave Technology, 2016, 34(2): 425-430.

[56] Tu J, Saitoh K, Amma Y, et al. Heterogeneous trench-assisted few-mode multi-core fiber with graded-index profile and square-lattice layout for low differential mode delay[J]. Optics Express, 2015, 23(14): 17783-17792.

[57] Maruyama R, Kuwaki N, Matsuo S, et al. Two mode optical fibers with low and flattened differential modal delay suitable for WDM-MIMO combined system[J]. Optics Express, 2014, 22(12): 14311-14321.

[58] SakamotoT, MoriT, YamamotoT, et al. Differential mode delay managed transmission line for wide-band WDM-MIMO system[C]∥Optical Fiber Communication Conference, Los Angeles, California. Washington, D.C.: Optical Society of America, 2012: OM2D. 1.

[59] GreggP, KristensenP, Ramachandran S. Conservation of orbital angular momentum in air core optical fibers[EB/OL]. ( 2014-12-03)[2020-08-24]. https:∥arxiv.org/abs/1412. 1397.

[60] Brunet C, Vaity P, Messaddeq Y, et al. Design, fabrication and validation of an OAM fiber supporting 36 states[J]. Optics Express, 2014, 22(21): 26117-26127.

[61] Ung B, Vaity P, Wang L, et al. Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes[J]. Optics Express, 2014, 22(15): 18044-18055.

[62] Tu J, Liu Z, Gao S, et al. Ring-core fiber with negative curvature structure supporting orbital angular momentum modes[J]. Optics Express, 2019, 27(15): 20358-20372.

[63] Tandjè A, Yammine J, Dossou M, et al. Ring-core photonic crystal fiber for propagation of OAM modes[J]. Optics Letters, 2019, 44(7): 1611-1614.

[64] Tu J J, Gao S C, Wang Z, et al. Bend-insensitive grapefruit-type holey ring-core fiber for weakly-coupled OAM mode division multiplexing transmission[J]. Journal of Lightwave Technology, 2020, 38(16): 4497-4503.

[65] Zhang J W, Liu J Y, Shen L, et al. Mode-division multiplexed transmission of wavelength-division multiplexing signals over a 100-km single-span orbital angular momentum fiber[J]. Photonics Research, 2020, 8(7): 1236-1242.

[66] Zhu L, Wang A, Chen S, et al. Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber[J]. Optics Express, 2017, 25(21): 25637-25645.

[67] Chen S, Li S, Fang L, et al. OAM mode multiplexing in weakly guiding ring-core fiber with simplified MIMO-DSP[J]. Optics Express, 2019, 27(26): 38049-38060.

[68] Kasahara M, Saitoh K, Sakamoto T, et al. Design of three-spatial-mode ring-core fiber[J]. Journal of Lightwave Technology, 2014, 32(7): 1337-1343.

[69] May AR, Zervas MN. Few-mode fibers with improved mode spacing[C]∥2015 European Conference on Optical Communication (ECOC), September 27 - October 1, 2015, Valencia, Spain.New York: IEEE Press, 2015: 1- 3.

[70] Snyder AW, Love JD. Optical waveguide theory[M]. Arrowsmith W J, Transl. 1 st ed. London: Chapman and Hall Ltd , 1983: 312- 313.

[71] Zhang Z, Gan J, Heng X, et al. Optical fiber design with orbital angular momentum light purity higher than 99.9[J]. Optics Express, 2015, 23(23): 29331-29341.

[72] Gregg P, Kristensen P, Rubano A, et al. Enhanced spin orbit interaction of light in highly confining optical fibers for mode division multiplexing[J]. Nature Communications, 2019, 10: 4707.

[73] Watanabe T, Kokubun Y. Ultra-large number of transmission channels in space division multiplexing using few-mode multi-core fiber with optimized air-hole-assisted double-cladding structure[J]. Optics Express, 2014, 22(7): 8309-8319.

[74] Tu J J, Long K P, Saitoh K. Design and optimization of 3-mode×12-core dual-ring structured few-mode multi-core fiber[J]. Optics Communications, 2016, 381: 30-36.

[75] MizunoT, KobayashiT, TakaraH, et al. 12-core×3-mode dense space division multiplexed transmission over 40 km employing multi-carrier signals with parallel MIMO equalization[C]∥ 2014 Optical Fiber Communication Conference, March 9-13, 2014, San Diego, California, USA. Washington, D.C.: Optical Society of America, 2014: Th5B. 2.

[76] SakaguchiJ, KlausW, Mendinueta J M D, et al. Realizing a 36-core, 3-mode fiber with 108 spatial channels[C]∥2015 Optical Fiber Communications Conference and Exhibition (OFC), March 22-26, 2015, Los Angeles, CA, USA. Washington, D.C.: Optical Society of America, 2015: Th5C. 2.

[77] UdenR, Correa RA, Lopez EA, et al. 2014European Conference on Optical Communication and Exhibition, September 22-24, 2014, Cannes, France. New York: IEEE, 2014: Mo.3.3. 4.

[78] SakamotoT, MatsuiT, SaitohK, et al. Low-loss and low-DMD few-mode multi-core fiber with highest core multiplicity factor[C]∥2016 Optical Fiber Communications Conference and Exhibition (OFC), March 20-24, 2016, Anaheim, CA, USA. Washington, D.C.: Optical Society of America, 2016: Th5A. 2.

[79] Soma D, Wakayama Y, Beppu S, et al. 10.16-peta-B/s dense SDM/WDM transmission over 6-mode 19-core fiber across the C+L band[J]. Journal of Lightwave Technology, 2018, 36(6): 1362-1368.

[80] RademacherG, Puttnam BJ, Luís RS, et al. 10.66 peta-bit/s transmission over a 38-core-three-mode fiber[C]∥2020 Optical Fiber Communications Conference and Exhibition (OFC), March 8-12, 2020, San Diego, CA, USA. Washington, D.C.: Optical Society of America, 2020: Th3H. 1.

[81] 杨晨, 李博睿, 童维军. 多芯光纤制备技术与应用的新进展[EB/OL]. ( 2017-06-15) [2017-06-15]. https:∥www.yofc.com/view/1548.html.

    YangC, Li BR, Tong W J. Progress of multi-core fiber fabrication technology and application[EB/OL]. ( 2017-06-15) [2017-06-15]. https:∥www.yofc.com/view/1548.html.

[82] 沈磊, 陈苏, 孙雪婷, 等. 长飞少模光纤分析[J]. 电信技术, 2017( 4): 30- 32.

    ShenL, ChenS, Sun XT, et al. Analysis of YOFC few-mode fibers[J]. Telecommunications Technology, 2017( 4): 30- 32.

[83] 陈威成, 胡贵军, 刘峰, 等. 少模光纤熔接点处模式耦合测量[J]. 光学学报, 2017, 37(12): 1206005.

    Chen W C, Hu G J, Liu F, et al. Measurement of mode coupling at a splice point between few-mode fiber[J]. Acta Optica Sinica, 2017, 37(12): 1206005.

[84] 张振振, 郭骋, 张一弛, 等. 增益均衡的远程遥泵少模光纤放大器[J]. 光学学报, 2019, 39(10): 1006004.

    Zhang Z Z, Guo C, Zhang Y C, et al. Gain-equalized remotely pumped few-mode fiber amplifier[J]. Acta Optica Sinica, 2019, 39(10): 1006004.

[85] 赖俊森, 汤瑞, 吴冰冰, 等. 光纤通信空分复用技术研究进展分析[J]. 电信科学, 2017, 33(9): 118-135.

    Lai J S, Tang R, Wu B B, et al. Analysis on the research progress of space division multiplexing in optical fiber communication[J]. Telecommunications Science, 2017, 33(9): 118-135.

[86] 王瑜浩, 武保剑, 万峰, 等. 少模光纤通信系统中模间非线性相位调制的补偿分析[J]. 光学学报, 2019, 39(12): 1206006.

    Wang Y H, Wu B J, Wan F, et al. Analysis of compensation for inter-mode nonlinear phase modulation in few-mode optical fiber communication systems[J]. Acta Optica Sinica, 2019, 39(12): 1206006.

[87] Shi CM, ShenL, Zhang JW, et al.Ultra-low inter-mode-group crosstalk ring-core fiber optimized using neural networks and genetic algorithm[C]∥2020 Optical Fiber Communications Conference and Exhibition (OFC), March 8-12, 2020, San Diego, CA, USA.New York: IEEE Press, 2020: W1B. 3.

涂佳静, 李朝晖. 空分复用光纤研究综述[J]. 光学学报, 2021, 41(1): 0106003. Jiajing Tu, Zhaohui Li. Review of Space Division Multiplexing Fibers[J]. Acta Optica Sinica, 2021, 41(1): 0106003.

本文已被 19 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!