光学学报, 2017, 37 (8): 0806001, 网络出版: 2018-09-07   

基于光频域反射计的光纤分布式传感中光谱分辨率提升技术 下载: 1049次

Spectral Resolution Improvement Technique for Optical Frequency-Domain Reflectometry-Based Optical Fiber Distributed Sensing
作者单位
中国航空工业集团公司西安飞行自动控制研究所, 陕西 西安 710065
引用该论文

张超, 杨楠, 包艳, 郑普超, 张兵. 基于光频域反射计的光纤分布式传感中光谱分辨率提升技术[J]. 光学学报, 2017, 37(8): 0806001.

Chao Zhang, Nan Yang, Yan Bao, Puchao Zheng, Bing Zhang. Spectral Resolution Improvement Technique for Optical Frequency-Domain Reflectometry-Based Optical Fiber Distributed Sensing[J]. Acta Optica Sinica, 2017, 37(8): 0806001.

参考文献

[1] Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012, 12(7): 8601-8639.

    Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012, 12(7): 8601-8639.

[2] 刘德明, 孙琪真. 分布式光纤传感技术及其应用[J]. 激光与光电子学进展, 2009, 46(11): 29-33.

    刘德明, 孙琪真. 分布式光纤传感技术及其应用[J]. 激光与光电子学进展, 2009, 46(11): 29-33.

    Liu Deming, Sun Qizhen. Distributed optical fiber sensing technology and its applications[J]. Laser & Optoelectronics Progress, 2009, 46(11): 29-33.

    Liu Deming, Sun Qizhen. Distributed optical fiber sensing technology and its applications[J]. Laser & Optoelectronics Progress, 2009, 46(11): 29-33.

[3] 宋牟平, 鲍翀, 裘超, 等. 结合布里渊光时域分析和光时域反射计的分布式光纤传感器[J]. 光学学报, 2010, 30(3): 650-654.

    宋牟平, 鲍翀, 裘超, 等. 结合布里渊光时域分析和光时域反射计的分布式光纤传感器[J]. 光学学报, 2010, 30(3): 650-654.

    Song Muping, Bao Chong, Qiu Chao, et al. A distributed optical-fiber sensor combined Brillouin optical time-domain analyzer with Brillouin optical time-domain reflectometer[J]. Acta Optica Sinica, 2010, 30(3): 650-654.

    Song Muping, Bao Chong, Qiu Chao, et al. A distributed optical-fiber sensor combined Brillouin optical time-domain analyzer with Brillouin optical time-domain reflectometer[J]. Acta Optica Sinica, 2010, 30(3): 650-654.

[4] Glombitza U, Brinkmeyer E. Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides[J]. Journal of Lightwave Technology, 1993, 11(8): 1377-1384.

    Glombitza U, Brinkmeyer E. Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides[J]. Journal of Lightwave Technology, 1993, 11(8): 1377-1384.

[5] Soller B J, Gifford D K, Wolfe M S, et al. High resolution optical frequency domain reflectometry for characterization of components and assemblies[J]. Optics Express, 2005, 13(2): 666-674.

    Soller B J, Gifford D K, Wolfe M S, et al. High resolution optical frequency domain reflectometry for characterization of components and assemblies[J]. Optics Express, 2005, 13(2): 666-674.

[6] 李政颖, 周祖德, 童杏林, 等. 高速大容量光纤光栅解调仪的研究[J]. 光学学报, 2012, 32(3): 0306007.

    李政颖, 周祖德, 童杏林, 等. 高速大容量光纤光栅解调仪的研究[J]. 光学学报, 2012, 32(3): 0306007.

    Li Zhengying, Zhou Zude, Tong Xinglin, et al. Research of high speed large capacity fiber Bragg grating demodulator[J]. Acta Optica Sinica, 2012, 32(3): 0306007.

    Li Zhengying, Zhou Zude, Tong Xinglin, et al. Research of high speed large capacity fiber Bragg grating demodulator[J]. Acta Optica Sinica, 2012, 32(3): 0306007.

[7] Kinet D, Mégret P, Goossen K W, et al. Fiber Bragg grating sensors toward structural health monitoring in composite materials: Challenges and solutions[J]. Sensors, 2014, 14(4): 7394-7419.

    Kinet D, Mégret P, Goossen K W, et al. Fiber Bragg grating sensors toward structural health monitoring in composite materials: Challenges and solutions[J]. Sensors, 2014, 14(4): 7394-7419.

[8] Richards W, Parker J. 22: RTO-AG-160-V22[J]. Piazza A. Application of fiber optic instrumentation. NASA Technical Reports Server, 2012.

    Richards W, Parker J. 22: RTO-AG-160-V22[J]. Piazza A. Application of fiber optic instrumentation. NASA Technical Reports Server, 2012.

[9] Froggatt M, Moore J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter[J]. Applied Optics, 1998, 37(10): 1735-1740.

    Froggatt M, Moore J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter[J]. Applied Optics, 1998, 37(10): 1735-1740.

[10] 谢玮霖, 董毅, 周潜, 等. 光频域反射技术中激光相位噪声影响分析[J]. 光学学报, 2011, 31(7): 0706003.

    谢玮霖, 董毅, 周潜, 等. 光频域反射技术中激光相位噪声影响分析[J]. 光学学报, 2011, 31(7): 0706003.

    Xie Weilin, Dong Yi, Zhou Qian, et al. Phase noise analysis of optical frequency domain reflectometry[J]. Acta Optica Sinica, 2011, 31(7): 0706003.

    Xie Weilin, Dong Yi, Zhou Qian, et al. Phase noise analysis of optical frequency domain reflectometry[J]. Acta Optica Sinica, 2011, 31(7): 0706003.

[11] 张彩霞, 张震伟, 郑万福, 等. 超弱反射光栅准分布式光纤传感系统研究[J]. 中国激光, 2012, 41(4): 0405004.

    张彩霞, 张震伟, 郑万福, 等. 超弱反射光栅准分布式光纤传感系统研究[J]. 中国激光, 2012, 41(4): 0405004.

    Zhang Caixia, Zhang Zhenwei, Zheng Wanfu, et al. Study of a quasi-distributed optical fiber sensing system based on ultra weak fiber Bragg grating[J]. Chinese J Lasers, 2012, 41(4): 0405004.

    Zhang Caixia, Zhang Zhenwei, Zheng Wanfu, et al. Study of a quasi-distributed optical fiber sensing system based on ultra weak fiber Bragg grating[J]. Chinese J Lasers, 2012, 41(4): 0405004.

[12] 李政颖, 孙文丰, 王洪海. 基于光频域反射技术的超弱反射光纤光栅传感技术研究[J]. 光学学报, 2015, 35(8): 0806003.

    李政颖, 孙文丰, 王洪海. 基于光频域反射技术的超弱反射光纤光栅传感技术研究[J]. 光学学报, 2015, 35(8): 0806003.

    Li Zhengying, Sun Wenfeng, Wang Honghai. Research on the ultra-weak reflective fiber Bragg grating sensing technology based on optical frequency domain reflection technology[J]. Acta Optica Sinica, 2015, 35(8): 0806003.

    Li Zhengying, Sun Wenfeng, Wang Honghai. Research on the ultra-weak reflective fiber Bragg grating sensing technology based on optical frequency domain reflection technology[J]. Acta Optica Sinica, 2015, 35(8): 0806003.

[13] 刘琨, 冯博文, 刘铁根, 等. 基于光频域反射技术的光纤连续分布式定位应变传感[J]. 中国激光, 2015, 42(5): 0505006.

    刘琨, 冯博文, 刘铁根, 等. 基于光频域反射技术的光纤连续分布式定位应变传感[J]. 中国激光, 2015, 42(5): 0505006.

    Liu Kun, Feng Bowen, Liu Tiegen, et al. Continuous distributed fiber strain location sensing based on optical frequency domain reflectometry[J]. Chinese J Lasers, 2015, 42(5): 0505006.

    Liu Kun, Feng Bowen, Liu Tiegen, et al. Continuous distributed fiber strain location sensing based on optical frequency domain reflectometry[J]. Chinese J Lasers, 2015, 42(5): 0505006.

[14] MooreD. Advances in swept-wavelength interferometry for precision measurements[D]. Colorado: University of Colorado, 2011: 68- 93.

    MooreD. Advances in swept-wavelength interferometry for precision measurements[D]. Colorado: University of Colorado, 2011: 68- 93.

[15] Soller BJ, WolfeM, Froggatt ME. Polarization resolved measurement of Rayleigh backscatter in fiber-optic components[C]. National Fiber Optic Engineers Conference, 2005: NWD3.

    Soller BJ, WolfeM, Froggatt ME. Polarization resolved measurement of Rayleigh backscatter in fiber-optic components[C]. National Fiber Optic Engineers Conference, 2005: NWD3.

[16] Kreger ST, Sang AK, Gifford DK, et al. Distributed strain and temperature sensing in plastic optical fiber using Rayleigh scatter[C]. SPIE, 2009, 7316: 73160A.

    Kreger ST, Sang AK, Gifford DK, et al. Distributed strain and temperature sensing in plastic optical fiber using Rayleigh scatter[C]. SPIE, 2009, 7316: 73160A.

张超, 杨楠, 包艳, 郑普超, 张兵. 基于光频域反射计的光纤分布式传感中光谱分辨率提升技术[J]. 光学学报, 2017, 37(8): 0806001. Chao Zhang, Nan Yang, Yan Bao, Puchao Zheng, Bing Zhang. Spectral Resolution Improvement Technique for Optical Frequency-Domain Reflectometry-Based Optical Fiber Distributed Sensing[J]. Acta Optica Sinica, 2017, 37(8): 0806001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!