Photonics Research, 2020, 8 (6): 06001042, Published Online: Jun. 1, 2020  

Disclosing transverse spin angular momentum of surface plasmon polaritons through independent spatiotemporal imaging of its in-plane and out-of-plane electric field components Download: 527次

Author Affiliations
1 Department of Physics, Changchun University of Science and Technology, Changchun 130022, China
2 e-mail: songxiaowei@cust.edu.cn
Copy Citation Text

Yulu Qin, Boyu Ji, Xiaowei Song, Jingquan Lin. Disclosing transverse spin angular momentum of surface plasmon polaritons through independent spatiotemporal imaging of its in-plane and out-of-plane electric field components[J]. Photonics Research, 2020, 8(6): 06001042.

References

[1] K. Y. Bliokh, F. Nori. Transverse spin of a surface polariton. Phys. Rev. A, 2012, 85: 061801.

[2] K. Y. Bliokh, A. Y. Bekshaev, F. Nori. Extraordinary momentum and spin in evanescent waves. Nat. Commun., 2014, 5: 3300.

[3] T. V. Mechelen, Z. Jacob. Universal spin-momentum locking of evanescent waves. Optica, 2016, 3: 118-126.

[4] K. Y. Bliokh, D. Smirnova, F. Nori. Quantum spin Hall effect of light. Science, 2015, 348: 1448-1451.

[5] Y. Dai, H. Petek. Plasmonic spin-Hall effect in surface plasmon polariton focusing. ACS Photon., 2019, 6: 2005-2013.

[6] Y. Dai, M. Dąbrowski, V. A. Apkarian, H. Petek. Ultrafast microscopy of spin-momentum-locked surface plasmon polaritons. ACS Nano, 2018, 12: 6588-6596.

[7] A. Hayat, J. B. Mueller, F. Capasso. Lateral chirality-sorting optical forces. Proc. Natl. Acad. Sci. USA, 2015, 112: 13190-13194.

[8] D. O’Connor, P. Ginzburg, F. J. Rodríguez-Fortuño, G. A. Wurtz, A. V. Zayats. Spin-orbit coupling in surface plasmon scattering by nanostructures. Nat. Commun., 2014, 5: 5327.

[9] K. Imaeda, S. Hasegawa, K. Imura. Static and dynamic near-field measurements of high-order plasmon modes induced in a gold triangular nanoplate. J. Phys. Chem. Lett., 2018, 9: 4075-4081.

[10] Y. Gorodetski, T. Chervy, S. Wang, J. A. Hutchison, A. Drezet, C. Genet, T. W. Ebbesen. Tracking surface plasmon pulses using ultrafast leakage imaging. Optica, 2016, 3: 48-53.

[11] B. Wild, L. Cao, Y. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, M. Pelton. Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires. ACS Nano, 2012, 6: 472-482.

[12] B. Le Feber, N. Rotenberg, D. Van Oosten, L. Kuipers. Modal symmetries at the nanoscale: a route toward a complete vectorial near-field mapping. Opt. Lett., 2014, 39: 2802-2805.

[13] B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E. B. Kley, A. Tünnermann, T. Pertsch. Plasmonic tip based on excitation of radially polarized conical surface plasmon polariton for detecting longitudinal and transversal fields. ACS Photon., 2015, 2: 1468-1475.

[14] J. Yang, Q. Sun, K. Ueno, X. Shi, T. Oshikiri, H. Misawa, Q. Gong. Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes. Nat. Commun., 2018, 9: 4858.

[15] Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, W. P. Hess. Ultrafast imaging of surface plasmons propagating on a gold surface. Nano Lett., 2015, 15: 3472-3478.

[16] A. Kubo, N. Pontius, H. Petek. Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface. Nano Lett., 2007, 7: 470-475.

[17] P. Kahl, D. Podbiel, C. Schneider, A. Makris, S. Sindermann, C. Witt, M. Horn-von Hoegen, M. Aeschlimann, F. J. M. zu Heringdorf. Direct observation of surface plasmon polariton propagation and interference by time-resolved imaging in normal-incidence two photon photoemission microscopy. Plasmonics, 2018, 13: 239-246.

[18] P. Kahl, S. Wall, C. Witt, C. Schneider, D. Bayer, A. Fischer, P. Melchior, M. Horn-von Hoegen, M. Aeschlimann, F. J. M. zu Heringdorf. Normal-incidence photoemission electron microscopy (NI-PEEM) for imaging surface plasmon polaritons. Plasmonics, 2014, 9: 1401-1407.

[19] R. C. Word, R. Könenkamp. Photonic and plasmonic surface field distributions characterized with normal-and oblique-incidence multi-photon PEEM. Ultramicroscopy, 2017, 183: 43-48.

[20] D. Podbiel, P. Kahl, A. Makris, B. Frank, S. Sindermann, T. J. Davis, M. Horn-von Hoegen, H. Giessen, F. J. Meyer zu Heringdorf. Imaging the nonlinear plasmoemission dynamics of electrons from strong plasmonic fields. Nano Lett., 2017, 17: 6569-6574.

[21] B. Ji, J. Qin, H. Tao, Z. Hao, J. Lin. Subwavelength imaging and control of ultrafast optical near-field under resonant-and off-resonant excitation of bowtie nanostructures. New J. Phys., 2016, 18: 093046.

[22] P. B. Johnson, R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 1972, 6: 4370-4379.

[23] T. Wang, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, S. Huant, E. Boer-Duchemin. Temporal coherence of propagating surface plasmons. Opt. Lett., 2014, 39: 6679-6682.

[24] M. Dąbrowski, Y. Dai, H. Petek. Ultrafast microscopy: imaging light with photoelectrons on the nano-femto scale. J. Phys. Chem. Lett., 2017, 8: 4446-4455.

[25] Y. Gong, A. G. Joly, P. Z. El-Khoury, W. P. Hess. Polarization-directed surface plasmon polariton launching. J. Phys. Chem. Lett., 2016, 8: 49-54.

[26] Y. Qin, X. Song, B. Ji, Y. Xu, J. Lin. Demonstrating a two-dimensional-tunable surface plasmon polariton dispersion element using photoemission electron microscopy. Opt. Lett., 2019, 44: 2935-2938.

[27] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 2003, 424: 824-830.

[28] C. Lemke, T. Leißner, A. Klick, J. Fiutowski, J. W. Radke, M. Thomaschewski, J. Kjelstrup-Hansen, H. G. Rubahn, M. Bauer. The complex dispersion relation of surface plasmon polaritons at gold/para-hexaphenylene interfaces. Appl. Phys. B, 2014, 116: 585-591.

[29] L. Zhang, A. Kubo, L. Wang, H. Petek, T. Seideman. Imaging of surface plasmon polariton fields excited at a nanometer-scale slit. Phys. Rev. B, 2011, 84: 245442.

[30] A. Klick, S. de la Cruz, C. Lemke, M. Großmann, H. Beyer, J. Fiutowski, H.-G. Rubahn, E. R. Méndez, M. Bauer. Amplitude and phase of surface plasmon polaritons excited at a step edge. Appl. Phys. B, 2016, 122: 79.

[31] V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, T. W. Ebbesen. Surface plasmon interferometry: measuring group velocity of surface plasmons. Opt. Lett., 2007, 32: 1235-1237.

Yulu Qin, Boyu Ji, Xiaowei Song, Jingquan Lin. Disclosing transverse spin angular momentum of surface plasmon polaritons through independent spatiotemporal imaging of its in-plane and out-of-plane electric field components[J]. Photonics Research, 2020, 8(6): 06001042.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!