Photonics Research, 2019, 7 (9): 09001106, Published Online: Aug. 28, 2019   

Widely tunable passively Q-switched Er3+-doped ZrF4 fiber laser in the range of 3.4–3.7 μm based on a Fe2+:ZnSe crystal Download: 551次

Author Affiliations
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
Copy Citation Text

Hongyu Luo, Jian Yang, Jianfeng Li, Yong Liu. Widely tunable passively Q-switched Er3+-doped ZrF4 fiber laser in the range of 3.4–3.7 μm based on a Fe2+:ZnSe crystal[J]. Photonics Research, 2019, 7(9): 09001106.

References

[1] A. Hoffman, C. Gmachl. Extending opportunities. Nat. Photonics, 2012, 6: 407.

[2] N. Y. Kostyukova, A. A. Boyko, V. Badikov, D. Badikov, G. Shevyrdyaeva, V. Panyutin, G. M. Marchev, D. B. Kolker, V. Petrov. Widely tunable in the mid-IR BaGa4Se7 optical parametric oscillator pumped at 1064  nm. Opt. Lett., 2016, 41: 3667-3670.

[3] Y. Yao, A. J. Hoffman, C. F. Gmachl. Mid-infrared quantum cascade lasers. Nat. Photonics, 2012, 6: 432-439.

[4] A. Godard. Infrared (2–12 μm) solid-state laser sources: a review. C. R. Physique, 2007, 8: 1100-1128.

[5] https://www.rp-photonics.com/mid_infrared_laser_sources.html.

[6] S. D. Jackson. Towards high-power mid-infrared emission from a fiber laser. Nat. Photonics, 2012, 6: 423-431.

[7] D. Faucher, M. Bernier, G. Androz, N. Caron, R. Vallée. 20  W passively cooled single-mode all-fiber laser at 2.8  μm. Opt. Lett., 2011, 36: 1104-1106.

[8] Y. O. Aydin, V. Fortin, R. Vallée, M. Bernier. Towards power scaling of 2.8  μm fiber lasers. Opt. Lett., 2018, 43: 4542-4545.

[9] G. A. Newburgh, M. Dubinskii, J. Zhang, W. Lu. A power scaled diode cladding pumped 2.8  μm Er:ZBLAN fiber laser. Proc. SPIE, 2019, 10981: 1098107.

[10] X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, N. Peyghambarian. Pulsed fluoride fiber lasers at 3  μm [invited]. J. Opt. Soc. Am. B, 2017, 34: A15-A28.

[11] S. Tokita, M. Murakami, S. Shimizu, M. Hashida, S. Sakabe. 12 W Q-switched Er:ZBLAN fiber laser at 2.8  μm. Opt. Lett., 2011, 36: 2812-2814.

[12] LamriniS.ScholleK.SchäferM.WardJ.FrancisM.FarriesM.SujeckiS.BensonT.SeddonA.OladejiA.NapierB.FuhrbergP., “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

[13] C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, Y. Liu. Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range. IEEE Photon. Technol. Lett., 2017, 29: 881-884.

[14] P. Paradis, V. Fortin, Y. O. Aydin, R. Vallée, M. Bernier. 10  W-level gain-switched all-fiber laser at 2.8  μm. Opt. Lett., 2018, 43: 3196-3199.

[15] S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, R. Vallée. Femtosecond fiber lasers reach the mid-infrared. Optica, 2015, 2: 623-626.

[16] J. F. Li, D. D. Hudson, S. D. Jackson. High-power diode-pumped fiber laser operating at 3  μm. Opt. Lett., 2011, 36: 3642-3644.

[17] S. Crawford, D. D. Hudson, S. D. Jackson. High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss. IEEE Photon. J., 2015, 7: 1502309.

[18] S. Antipov, D. D. Hudson, A. Fuerbach, S. D. Jackson. High-power mid-infrared femtosecond fiber laser in the water vapor transmission window. Optica, 2016, 3: 1373-1376.

[19] H. Y. Luo, J. F. Li, Y. C. Hai, X. Lai, Y. Liu. State-switchable and wavelength-tunable gain-switched mid-infrared fiber laser in the wavelength region around 2.94  μm. Opt. Express, 2018, 26: 63-79.

[20] H. Y. Luo, X. L. Tian, Y. Gai, R. F. Wei, J. F. Li, J. Qiu, Y. Liu. Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region. Photon. Res., 2018, 6: 900-907.

[21] M. R. Majewski, R. I. Woodward, S. D. Jackson. Dysprosium-doped ZBLAN fiber laser tunable from 2.8  μm to 3.4  μm, pumped at 1.7  μm. Opt. Lett., 2018, 43: 971-974.

[22] R. I. Woodward, M. R. Majewski, S. D. Jackson. Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30  μm. APL Photon., 2018, 3: 116106.

[23] Y. Wang, F. Jobin, S. Duval, V. Fortin, P. Laporta, M. Bernier, G. Galzerano, R. Vallée. Ultrafast Dy3+:fluoride fiber laser beyond 3  μm. Opt. Lett., 2019, 44: 395-398.

[24] R. I. Woodward, M. R. Majewski, N. Macadam, G. Hu, T. Albrow-Owen, T. Hasan, S. D. Jackson. Q-switched Dy:ZBLAN fiber lasers beyond 3  μm: comparison of pulse generation using acousto-optic modulation and inkjet-printed black phosphorus. Opt. Express, 2019, 27: 15032-15045.

[25] H. Y. Luo, J. Yang, Y. Gao, Y. Xu, X. H. Li, Y. Liu. Tunable passively Q-switched Dy3+-doped fiber laser from 2.71 to 3.08  μm using PbS nanoparticles. Opt. Lett., 2019, 44: 2322-2325.

[26] H. Többen. CW lasing at 3.45  μm in erbium-doped fluorozirconate fibres. Frequenz, 1991, 45: 250-252.

[27] C. Frayssinous, V. Fortin, J.-P. Bérubé, A. Fraser, R. Vallée. Resonant polymer ablation using a compact 3.44  μm fiber laser. J. Mater. Process. Technol., 2018, 252: 813-820.

[28] A. E. Klingbeil, J. B. Jeffries, R. K. Hanson. Temperature- and pressure-dependent absorption cross sections of gaseous hydrocarbons at 3.39  μm. Meas. Sci. Technol., 2006, 17: 1950-1957.

[29] O. Henderson-Sapir, J. Munch, D. J. Ottaway. Mid-infrared fiber lasers at and beyond 3.5 μm using dual wavelength pumping. Opt. Lett., 2014, 39: 493-496.

[30] O. Henderson-Sapir, S. D. Jackson, D. Ottaway. Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser. Opt. Lett., 2016, 41: 1676-1679.

[31] F. Maes, V. Fortin, M. Bernier, R. Vallée. 5.6  W monolithic fiber laser at 3.55  μm. Opt. Lett., 2017, 42: 2054-2057.

[32] O. Henderson-Sapir, J. Munch, D. J. Ottaway. New energy-transfer upconversion process in Er3+:ZBLAN mid-infrared fiber lasers. Opt. Express, 2016, 24: 6869-6883.

[33] A. Malouf, O. Henderson-Sapir, M. Gorjan, D. J. Ottaway. Numerical modeling of 3.5  μm dual-wavelength pumped erbium doped mid-infrared fiber lasers. IEEE J. Quantum Electron., 2016, 52: 1600412.

[34] F. Maes, V. Fortin, M. Bernier, R. Vallée. Quenching of 3.4  μm dual-wavelength pumped erbium doped fiber lasers. IEEE J. Quantum Electron., 2017, 53: 1600208.

[35] F. Jobin, V. Fortin, F. Maes, M. Bernier, R. Vallée. Gain-switched fiber laser at 3.55  μm. Opt. Lett., 2018, 43: 1770-1773.

[36] H. Y. Luo, J. Yang, F. Liu, Z. Hu, Y. Xu, F. Yan, H. L. Peng, F. Ouellette, J. F. Li, Y. Liu. Watt-level gain-switched fiber laser at 3.46  μm. Opt. Express, 2019, 27: 1367-1375.

[37] Henderson-SapirO.MunchJ.OttawayD. J., “A higher power 3.5  μm fiber laser,” in Advanced Solid State Lasers (2014), paper ATu1A.3.

[38] O. Henderson-Sapir, A. Malouf, N. Bawden, J. Munch, S. D. Jackson, D. J. Ottaway. Recent advances in 3.5  μm erbium doped mid-infrared fiber lasers. IEEE J. Sel. Top. Quantum Electron., 2016, 23: 6-14.

[39] N. Bawden, H. Matsukuma, O. Henderson-Sapir, E. Klantsataya, S. Tokita, D. J. Ottaway. Actively Q-switched dual-wavelength pumped Er3+:ZBLAN fiber laser at 3.47  μm. Opt. Lett., 2018, 43: 2724-2727.

[40] Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, D. Shen. Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5  μm wavelength. Opt. Express, 2018, 26: 8224-8231.

[41] B. Guo. 2D noncarbon materials-based nonlinear optical devices for ultrafast photonics [invited]. Chin. Opt. Lett., 2018, 16: 020004.

[42] K. Wu, B. H. Chen, X. Y. Zhang, S. F. Zhang, C. S. Guo, C. Li, P. S. Xiao, J. Wang, L. J. Zhou, W. W. Zou, J. P. Chen. High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited). Opt. Commun., 2018, 406: 214-229.

[43] C. Wei, X. S. Zhu, R. A. Norwood, N. Peyghambarian. Passively Q-switched 2.8-μm nanosecond fiber laser. IEEE Photon. Technol. Lett., 2012, 24: 1741-1744.

[44] G. W. Zhu, X. S. Zhu, K. Balakrishnan, R. A. Norwood, N. Peyghambarian. Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3  μm. Opt. Mater. Express, 2013, 3: 1365-1377.

[45] T. Zhang, G. Y. Feng, H. Zhang, X. H. Yang, S. Y. Dai, S. H. Zhou. 2.78 μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film. Laser Phys. Lett., 2016, 13: 075102.

[46] S. G. Ning, G. Y. Feng, H. Zhang, W. Zhang, S. Y. Dai, Y. Xiao, W. Li, X. X. Chen, X. H. Zhou. Fabrication of Fe2+:ZnSe nanocrystals and application for a passively Q-switched fiber laser. Opt. Mater. Express, 2018, 8: 865-874.

[47] V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, A. A. Voronov. 3.77–5.05  μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures. IEEE J. Quantum Electron., 2006, 42: 907-917.

[48] https://www.ipgphotonics.com/en/88/Widget/Passive+Q-switch+Fe_ZnS+and+Fe_ZnSe+Datasheet.pdf.

[49] C. Wei, X. S. Zhu, R. A. Norwood, N. Peyghambarian. Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8  μm. Opt. Lett., 2012, 37: 3849-3851.

Hongyu Luo, Jian Yang, Jianfeng Li, Yong Liu. Widely tunable passively Q-switched Er3+-doped ZrF4 fiber laser in the range of 3.4–3.7 μm based on a Fe2+:ZnSe crystal[J]. Photonics Research, 2019, 7(9): 09001106.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!