激光与光电子学进展, 2020, 57 (3): 031601, 网络出版: 2020-02-17   

偏振无关高吸收效率宽吸收带宽超材料吸收器 下载: 1169次

Polarization Independent High Absorption Efficiency Wide Absorption Bandwidth Metamaterial Absorber
作者单位
1 衢州职业技术学院信息工程学院, 浙江 衢州 324000
2 北京工业大学光电子技术教育部重点实验室, 北京 100124
引用该论文

王超素, 江达飞, 江孝伟. 偏振无关高吸收效率宽吸收带宽超材料吸收器[J]. 激光与光电子学进展, 2020, 57(3): 031601.

Chaosu Wang, Dafei Jiang, Xiaowei Jiang. Polarization Independent High Absorption Efficiency Wide Absorption Bandwidth Metamaterial Absorber[J]. Laser & Optoelectronics Progress, 2020, 57(3): 031601.

参考文献

[1] 周永光, 李民权, 潘旭. 基于超材料的宽频带吸波体[J]. 激光与光电子学进展, 2017, 54(12): 121602.

    Zhou Y G, Li M Q, Pan X. Broadband absorber based on metamaterials[J]. Laser & Optoelectronics Progress, 2017, 54(12): 121602.

[2] Dash R K, Sahu S K, Mishra C S, et al. Realization of ‘non-linear invisibility cloak’ using meta-material[J]. Optik, 2016, 127(20): 9635-9639.

[3] Alù A, Silveirinha M G, Salandrino A, et al. Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern[J]. Physical Review B, 2007, 75(15): 155410.

[4] Chen H T, Padilla W J, Cich M J, et al. A metamaterial solid-state terahertz phase modulator[J]. Nature Photonics, 2009, 3(3): 148-151.

[5] Ebrahimi A, Withayachumnankul W, Al-Sarawi S, et al. High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization[J]. IEEE Sensors Journal, 2014, 14(5): 1345-1351.

[6] Smith D R, Pendry J B. Homogenization of metamaterials by field averaging (invited paper)[J]. Journal of the Optical Society of America B, 2006, 23(3): 391-403.

[7] Shrekenhamer D, Xu W R, Venkatesh S, et al. Experimental realization of a metamaterial detector focal plane array[J]. Physical Review Letters, 2012, 109(17): 177401.

[8] Dincer F, Akgol O, Karaaslan M, et al. Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime[J]. Progress in Electromagnetics Research, 2014, 144: 93-101.

[9] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402.

[10] Su Z X, Yin J B, Zhao X P. Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures[J]. Optics Express, 2015, 23(2): 1679-1690.

[11] Yao G, Ling F R, Yue J, et al. Dual-band tunable perfect metamaterial absorber in the THz range[J]. Optics Express, 2016, 24(2): 1518-1527.

[12] Hoa N T Q, Lam P H, Tung P D, et al. Numerical study of a wide-angle and polarization-insensitive ultrabroadband metamaterial absorber in visible and near-infrared region[J]. IEEE Photonics Journal, 2019, 11(1): 4600208.

[13] Xiong H, Wu Y B, Dong J, et al. Ultra-thin and broadband tunable metamaterial graphene absorber[J]. Optics Express, 2018, 26(2): 1681-1688.

[14] Shi Y, Li Y C, Hao T, et al. A design of ultra-broadband metamaterial absorber[J]. Waves in Random and Complex Media, 2017, 27(2): 381-391.

[15] He S L, Chen T. Broadband THz absorbers with graphene-based anisotropic metamaterial films[J]. IEEE Transactions on Terahertz Science and Technology, 2013, 3(6): 757-763.

[16] 崔海娜. 基于石墨烯的光子晶体慢光波导[D]. 杭州: 浙江大学, 2017: 17- 20.

    Cui HN. Graphene based photonic crystal slow light waveguide[D]. Hangzhou: Zhejiang University, 2017: 17- 20.

[17] 贾晓宇. 基于表面等离子体的慢光研究[D]. 北京: 北京邮电大学, 2015: 18- 35.

    Jia XY. Theoretical research of slow-light based on surface plasmon polaritons[D]. Beijing: Beijing University of Posts and Telecommunications, 2015: 18- 35.

[18] 高健, 桑田, 李俊浪, 等. 利用窄刻槽金属光栅实现石墨烯双通道吸收增强[J]. 物理学报, 2018, 67(18): 184210.

    Gao J, Sang T, Li J L, et al. Double-channel absorption enhancement of graphene using narrow groove metal grating[J]. Acta Physica Sinica, 2018, 67(18): 184210.

[19] Cui Y X, Fung K H, Xu J, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 2012, 12(3): 1443-1447.

[20] Zhou Z H, Chen K, Zhao J M, et al. Metasurface Salisbury screen: achieving ultra-wideband microwave absorption[J]. Optics Express, 2017, 25(24): 30241-30252.

[21] Rufangura P, Sabah C. Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications[J]. Journal of Alloys and Compounds, 2016, 671: 43-50.

[22] Rufangura P, Sabah C. Polarization angle insensitive dual-band perfect metamaterial absorber for solar cell applications[J]. Physica Status Solidi (c), 2015, 12(9/10/11): 1241-1245.

王超素, 江达飞, 江孝伟. 偏振无关高吸收效率宽吸收带宽超材料吸收器[J]. 激光与光电子学进展, 2020, 57(3): 031601. Chaosu Wang, Dafei Jiang, Xiaowei Jiang. Polarization Independent High Absorption Efficiency Wide Absorption Bandwidth Metamaterial Absorber[J]. Laser & Optoelectronics Progress, 2020, 57(3): 031601.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!