Photonics Research, 2020, 8 (9): 09001428, Published Online: Aug. 7, 2020  

Integrated dispersion compensated mode-locked quantum dot laser Download: 677次

Author Affiliations
1 Electrical and Computer Engineering Department, University of California Santa Barbara, Santa Barbara, California 93106, USA
2 Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, USA
3 Institute for Energy Efficiency, University of California, Santa Barbara, California 93106, USA
Copy Citation Text

Zeyu Zhang, Justin C. Norman, Songtao Liu, Aditya Malik, John E. Bowers. Integrated dispersion compensated mode-locked quantum dot laser[J]. Photonics Research, 2020, 8(9): 09001428.

References

[1] Y. Arakawa, H. Sakaki. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett., 1982, 40: 939-941.

[2] KageyamaT.NishiK.YamaguchiM.MochidaR.MaedaY.TakemasaK.TanakaY.YamamotoT.SugawaraM.ArakawaY., “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper PDA_1.

[3] D. Bimberg, U. W. Pohl. Quantum dots: promises and accomplishments. Mater. Today, 2011, 14: 388-397.

[4] J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. Bowers, F. Grillot. Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor. Appl. Phys. Lett., 2018, 112: 251111.

[5] H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, F. Grillot. Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon. J. Opt. Soc. Am. B, 2018, 35: 2780-2787.

[6] Z. Zhang, D. Jung, J. C. Norman, W. W. Chow, J. E. Bowers. Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications. IEEE J. Sel. Top. Quantum Electron., 2019, 25: 1900509.

[7] A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, J. E. Bowers. Quantum dot lasers for silicon photonics. Photon. Res., 2015, 3: B1-B9.

[8] J. C. Norman, D. Jung, Y. Wan, J. E. Bowers. Perspective: the future of quantum dot photonic integrated circuits. APL Photon., 2018, 3: 030901.

[9] S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross. Electrically pumped continuous-wave III-V quantum dot lasers on silicon. Nat. Photonics, 2016, 10: 307-311.

[10] D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, A. C. Gossard, J. E. Bowers. Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency. ACS Photon., 2017, 5: 1094-1100.

[11] Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu. Monolithic quantum-dot distributed feedback laser array on silicon. Optica, 2018, 5: 528-533.

[12] S. Liu, X. Wu, D. Jung, J. C. Norman, M. Kennedy, H. K. Tsang, A. C. Gossard, J. E. Bowers. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity. Optica, 2019, 6: 128-134.

[13] Y. Wan, J. Norman, Q. Li, M. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres. 1.3 μm submilliamp threshold quantum dot micro-lasers on Si. Optica, 2017, 4: 940-944.

[14] Y. Wan, S. Zhang, J. C. Norman, M. Kennedy, W. He, S. Liu, C. Xiang, C. Shang, J.-J. He, A. C. Gossard, J. E. Bowers. Tunable quantum dot lasers grown directly on silicon. Optica, 2019, 6: 1394-1400.

[15] Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, J. E. Bowers. Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates. Opt. Express, 2017, 25: 27715-27723.

[16] S. Arafin, L. A. Coldren. Advanced InP photonic integrated circuits for communication and sensing. IEEE J. Sel. Top. Quantum Electron., 2017, 24: 6100612.

[17] T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, J. E. Bowers. Heterogeneous silicon photonic integrated circuits. J. Lightwave Technol., 2016, 34: 20-35.

[18] C. Xiang, W. Jin, J. Guo, J. D. Peters, M. Kennedy, J. Selvidge, P. A. Morton, J. E. Bowers. Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica, 2020, 7: 20-21.

[19] KurczveilG.ZhangC.DescosA.LiangD.FiorentinoM.BeausoleilR., “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in 2018 IEEE International Semiconductor Laser Conference (ISLC) (IEEE, 2018), pp. 12.

[20] A. Y. Liu, J. Bowers. Photonic integration with epitaxial III-V on silicon. IEEE J. Sel. Top. Quantum Electron., 2018, 24: 6000412.

[21] H. Zhao, S. Pinna, B. Song, L. Megalini, S. T. Š. Brunelli, L. A. Coldren, J. Klamkin. Indium phosphide photonic integrated circuits for free space optical links. IEEE J. Sel. Top. Quantum Electron., 2018, 24: 6101806.

[22] W. W. Chow, M. Lorke, F. Jahnke. Will quantum dots replace quantum wells as the active medium of choice in future semiconductor lasers?. IEEE J. Sel. Top. Quantum Electron., 2011, 17: 1349-1355.

[23] J. Lee, M. Devre, B. Reelfs, D. Johnson, J. Sasserath, F. Clayton, D. Hays, S. Pearton. Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas. J. Vac. Sci. Technol. A, 2000, 18: 1220-1224.

[24] S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, T. F. Krauss. Reduced surface sidewall recombination and diffusion in quantum-dot lasers. IEEE Photon. Technol. Lett., 2006, 18: 1861-1863.

[25] G. P. Agrawal, N. A. Olsson. Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE J. Quantum Electron., 1989, 25: 2297-2306.

[26] K. Sato, A. Hirano, H. Ishii. Chirp-compensated 40-GHz mode-locked lasers integrated with electroabsorption modulators and chirped gratings. IEEE J. Sel. Top. Quantum Electron., 1999, 5: 590-595.

[27] P. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. Logan, H. Presby, T. Erdogan, A. Sergent, K. Wecht. Packaged hybrid soliton pulse source results 70 terabit. km/sec soliton transmission. IEEE Photon. Technol. Lett., 1995, 7: 111-113.

[28] A. Hou, R. Tucker, G. Eisenstein. Pulse compression of an actively modelocked diode laser using linear dispersion in fiber. IEEE Photon. Technol. Lett., 1990, 2: 322-324.

[29] J. Wiesenfeld, M. Kuznetsov, A. Hou. Tunable, picosecond pulse generation using a compressed, modelocked laser diode source. IEEE Photon. Technol. Lett., 1990, 2: 319-321.

[30] M. J. Strain, P. M. Stolarz, M. Sorel. Passively mode-locked lasers with integrated chirped bragg grating reflectors. IEEE J. Quantum Electron., 2011, 47: 492-499.

[31] Y. Silberberg, P. Smith. Subpicosecond pulses from a mode-locked semiconductor laser. IEEE J. Quantum Electron., 1986, 22: 759-761.

[32] T. Schrans, R. Salvatore, S. Sanders, A. Yariv. Subpicosecond (320 fs) pulses from CW passively mode-locked external cavity two-section multiquantum well lasers. Electron. Lett., 1992, 28: 1480-1482.

[33] M. Bagnell, J. Davila-Rodriguez, A. Ardey, P. Delfyett. Dispersion measurements of a 1.3 μm quantum dot semiconductor optical amplifier over 120 nm of spectral bandwidth. Appl. Phys. Lett., 2010, 96: 211907.

[34] Y. Bidaux, K. A. Fedorova, D. A. Livshits, E. U. Rafailov, J. Faist. Investigation of the chromatic dispersion in two-section InAs/GaAs quantum-dot lasers. IEEE Photon. Technol. Lett., 2017, 29: 2246-2249.

[35] D. Pastor, J. Capmany, D. Ortega, V. Tatay, J. Mart. Design of apodized linearly chirped fiber gratings for dispersion compensation. J. Lightwave Technol., 1996, 14: 2581-2588.

[36] W. W. Chow, S. Liu, Z. Zhang, J. E. Bowers, M. Sargent. Multimode description of self-mode locking in a single-section quantum-dot laser. Opt. Express, 2020, 28: 5317-5330.

Zeyu Zhang, Justin C. Norman, Songtao Liu, Aditya Malik, John E. Bowers. Integrated dispersion compensated mode-locked quantum dot laser[J]. Photonics Research, 2020, 8(9): 09001428.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!