红外与激光工程, 2020, 49 (12): 20201066, 网络出版: 2021-01-14  

光子集成混沌半导体激光器研究进展(特邀) 下载: 603次

Progress in photonic integrated chaotic semiconductor laser (Invited)
作者单位
1 太原理工大学 新型传感器与智能控制教育部重点实验室,山西 太原 030024;太原理工大学 物理与光电工程学院,山西 太原 030024
2 太原理工大学 新型传感器与智能控制教育部重点实验室,山西 太原 030024
3 武汉光迅科技股份有限公司,湖北 武汉 430205
引用该论文

柴萌萌, 乔丽君, 张明江, 卫晓晶, 杨强, 徐红春. 光子集成混沌半导体激光器研究进展(特邀)[J]. 红外与激光工程, 2020, 49(12): 20201066.

Mengmeng Chai, Lijun Qiao, Mingjiang Zhang, Xiaojing Wei, Qiang Yang, Hongchun Xu. Progress in photonic integrated chaotic semiconductor laser (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201066.

参考文献

[1] Maiman T H. Stimulated optical emission in fluorescent solids. I. Theoretical considerations[J]. Physical Review, 1961, 123(4): 1145-1150.

[2] Franken P A, Hill A E, Peters C W. Generation of optical harmonics[J]. Physical Review Letters, 1961, 7(4): 118-119.

[3] Haken H. Analogy between higher instabilities in fluids and lasers[J]. Physics Letters A, 1975, 53(1): 77-78.

[4] Xu Y P, Zhang M J, Zhang L. Time-delay signature suppression in a chaotic semiconductor laser by fiber random grating induced distributed feedback[J]. Optics Letters, 2017, 42(20): 4107-4110.

[5] Wang D M, Wang L S, Guo Y Y. Key space enhancement of optical chaos secure communication: chirped FBG feedback semiconductor laser[J]. Optics Express, 2019, 27(3): 3065-3073.

[6] Jiang N, Wang C, Xue C P. Generation of flat wideband chaos with suppressed time delay signature by using optical time lens[J]. Optics Express, 2017, 25(13): 14359-14367.

[7] Zhao Q C, Yin H X. Performance analysis of orthogonal optical chaotic division multiplexing utilizing semiconductor lasers[J]. Optics and Laser Technology, 2013, 47: 208-213.

[8] Oliver N, Soriano M C, Sukow D W. Fast random bit generation using a chaotic laser: approaching the information theoretic limit[J]. IEEE Journal of Quantum Electronics, 2013, 49(11): 910-918.

[9] Lin F Y, Liu J M. Chaotic lidar[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(5): 991-997.

[10] Wang Y H, Zhang M J, Zhang J Z. Millimeter-Level-Spatial-Resolution Brillouin optical correlation-domain analysis based on broadband chaotic laser[J]. Journal of Lightwave Technology, 2019, 37(15): 3706-3712.

[11] Urban P J, Getaneh A, von der Weid J P. Detection of fiber faults in passive optical networks[J]. Journal of Optical Communications and Networking, 2013, 5(11): 1111-1121.

[12] Zhang M J, Liu T G, Wang A B. Photonic ultrawideband signal generator using an optically injected chaotic semiconductor laser[J]. Optics Letters, 2011, 36(6): 1008-1010.

[13] Argyris A, Hamacher M, Chlouverakis K E. Photonic integrated device for chaos applications in communications[J]. Physical Review Letters, 2008, 100(19): 194101.

[14] Sasaki T, Kakesu I, Mitsui Y. Common-signal-induced synchronization in photonic integrated circuits and its application to secure key distribution[J]. Optics Express, 2017, 25(21): 26029.

[15] Chlouverakis K E, Argyris A, Bogris A. Hurst exponents and cyclic scenarios in a photonic integrated circuit[J]. Physical Review E, 2008, 78(6): 066215.

[16] Toomey J P, Kane D M, McMahon C. Integrated semiconductor laser with optical feedback: transition from short to long cavity regime[J]. Optics Express, 2015, 23(14): 18754-18762.

[17] Toomey J P, Argyris A, McMahon C. Time-scale independent permutation entropy of a photonic integrated device[J]. Journal of Lightwave Technology, 2017, 35(1): 88-95.

[18] Wu J G, Zhao L J, Wu Z M. Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip[J]. Optics Express, 2013, 21(20): 23358.

[19] Yu L, Lu D, Pan B. Monolithically integrated amplified feedback lasers for high-quality microwave and broadband chaos generation[J]. Journal of Lightwave Technology, 2014, 32(20): 3595-3601.

[20] Bauer S, Brox O, Kreissl J. Nonlinear dynamics of semiconductor lasers with active optical feedback[J]. Physical Review E, 2004, 69(2): 016206.

[21] Pan B W, Lu D, Zhao L J. Broadband chaos generation using monolithic dual-mode laser with optical feedback[J]. IEEE Photonics Technology Letters, 2015, 27(23): 2516-2519.

[22] Yin X M, Zhong Z Q, Zhao L J. Wide bandwidth chaotic signal generation in a monolithically integrated semiconductor laser via optical injection[J]. Optics Communications, 2015, 355: 551-557.

[23] Zhu W Q, Wu Z M, Zhong Z Q. Dynamics of a monolithically integrated semiconductor laser under optical injection[J]. IEEE Photonics Technology Letters, 2015, 27(20): 2119-2122.

[24] Qi H F, Chen G C, Lu D. A monolithically integrated laser-photodetector chip for on-chip photonic and microwave signal generation[J]. Photonics, 2019, 6(102).

[25] Harayama T, Sunada S, Yoshimura K. Fast nondeterministic random-bit generation using on-chip chaos lasers[J]. Physical Review A, 2011, 83(3): 031803.

[26] Dou X Y, Yin H X, Tang C R. Structure design and performance simulation on monolithic integrated chaotic-optical transmitter with photonic crystal waveguide in external cavity[J]. Optik, 2014, 125(15): 3961-3965.

[27] Zhang M J, Xu Y H, Zhao T. A hybrid integrated short-external-cavity chaotic semiconductor laser[J]. IEEE Photonics Technology Letters, 2017, 29(21): 1911-1914.

[28] Zhang M J, Niu Y N, Zhao T. Chaos generation by a hybrid integrated chaotic semiconductor laser[J]. Chinese Physics B, 2017, 27(5): 126-134.

[29] Tronciu V Z, Mirasso C R, Colet P. Chaos generation and synchronization using an integrated source with an air gap[J]. IEEE Journal of Quantum Electronics, 2010, 46(12): 1840-1846.

[30] Tronciu V Z, Mirasso C R, Colet P. Chaos-based communications using semiconductor lasers subject to feedback from an integrated double cavity[J]. Journal of Physics B-Atomic Molecular and Optical Physics, 2008, 41(15): 155401.

[31] Sunada S, Harayama T, Arai K. Chaos laser chips with delayed optical feedback using a passive ring waveguide[J]. Optics Express, 2011, 19(7): 5713-5724.

[32] Sunada S, Fukushima T, Shinohara S. A compact chaotic laser device with a two-dimensional external cavity structure[J]. Applied Physics Letters, 2014, 104(24): 241105.

[33] Ma X W, Huang Y Z, Long H. Experimental and theoretical analysis of dynamical regimes for optically injected microdisk lasers[J]. Journal of Lightwave Technology, 2016, 34(22): 5263-5269.

[34] Wang Y X, Jia Z W, Gao Z S. Generation of laser chaos with wide-band flat power spectrum in a circular-side hexagonal resonator microlaser with optical feedback[J]. Optics Express, 2020, 28(12): 18507-18515.

[35] Tager A A, Elenkrig B B. Stability regimes and high-frequency modulation of laser diodes with short external cavity[J]. IEEE Journal of Quantum Electronics, 1993, 29(12): 2886-2890.

[36] Tager A A, Petermann K. High-frequency oscillations and self-mode locking in short external-cavity laser diodes[J]. IEEE Journal of Quantum Electronics, 1994, 30(7): 1553-1561.

[37] Guo X X, Xiang S Y, Zhang Y H. High speed neuromorphic reservoir computing based on a semiconductor nanolaser with optical feedback under electrical modulation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(5): 101109.

[38] Verschaffelt G, Khoder M, Sande G V D. Random number generator based on an integrated laser with on-chip optical feedback[J]. Chaos, 2017, 27(11): 114310.

[39] Vaughan M P, Henning I, Adams M J. Mutual optical injection in coupled DBR laser pairs[J]. Optics Express, 2009, 17(3): 2033-2041.

[40] Cemlyn B R, Labukhin D, Henning I D. Dynamic transitions in a photonic integrated circuit[J]. IEEE Journal of Quantum Electronics, 2012, 48(2): 261-268.

[41] Liu D, Sun C Z, Xiong B. Suppression of chaos in integrated twin DFB lasers for millimeter-wave generation[J]. Optics Express, 2013, 21(2): 2444-2451.

[42] Liu D, Sun C Z, Xiong B. Locked and unlocked behavior of integrated mutually coupled lasers with ultra-short delay[J]. IEEE International Semiconductor Laser Conference, 2014: 117-118.

[43] Liu D, Sun C Z, Xiong B. Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay[J]. Optics Express, 2014, 22(5): 5614-5622.

[44] Ohara S, Dal Bosco A K, Ugajin K. Dynamics-dependent synchronization in on-chip coupled semiconductor lasers[J]. Physical Review E, 2017, 96(3): 032216.

[45] Chai M M, Qiao L J, Zhang M J. Simulation of monolithically integrated semiconductor laser subject to random feedback and mutual injection[J]. IEEE Journal of Quantum Electronics, 2020, 56(5): 1-8.

[46] Zhang L M, Pan B W, Chen G C. Long-range and high-resolution correlation optical time-domain reflectometry using a monolithic integrated broadband chaotic laser[J]. Applied Optics, 2017, 56(4): 1253-1256.

[47] Li M W, Zhang X C, Zhang J Z. Long-range and high-precision fault measurement based on integrated short-external-cavity chaotic semiconductor laser[J]. IEEE Photonics Technology Letters, 2019, 31(16): 1389-1392.

[48] Argyris A, Deligiannidis S, Pikasis E. Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit[J]. Optics Express, 2010, 18(18): 18763-18768.

[49] Zhang L M, Pan B W, Chen G C. 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser[J]. Scientific Reports, 2017, 7: 45900.

[50] Takahashi R, Akizawa Y, Uchida A. Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation[J]. Optics Express, 2014, 22(10): 11727.

[51] Ugajin K, Terashima Y, IwakawaK. Real-time fast physical random number generator with a photonic integrated circuit[J]. Optics Express, 2017, 25(6): 6511-6523.

[52] Syvridis D, Argyris A, Bogris A. Integrated devices for optical chaos generation and communication applications[J]. IEEE Journal of Quantum Electronics, 2009, 45(11): 1421-1428.

[53] Argyris A, Grivas E, Hamacher M. Chaos-on-a-chip secures data transmission in optical fiber links[J]. Optics Express, 2010, 18(5): 5188-5189.

[54] Bogris A, Argyris A, Syvridis D. Encryption efficiency analysis of chaotic communication systems based on photonic integrated chaotic circuits[J]. IEEE Journal of Quantum Electronics, 2010, 46(10): 1421-1429.

[55] Li S S, Chan S C. Chaotic Time-delay signature suppression in a semiconductor laser with frequency-detuned grating feedback[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6).

[56] Zhang J Z, Feng C K, Zhang M J. Suppression of time delay signature based on Brillouin backscattering of chaotic laser[J]. IEEE Photonics Journal, 2017, 9(2): 1502408.

[57] Gray G R, Huang D, Agrawal G P. Chaotic dynamics of semiconductor lasers with phase-conjugate feedback[J]. Physical Review A, 1994, 49(3): 2096-2105.

[58] Sacher J, Elsässer W, Göbel E O. Intermittence in the coherence collapse of a semiconductor laser with external feedback[J]. Physical Review Letters, 1989, 63(20): 2224-2227.

[59] Tang D Y, Pujol J, Weiss C O. Type-III intermittency of a laser[J]. Physical Review A, 1991, 44(1): 35-38.

[60] Tang D Y, Li M Y, Weiss C O. Laser dynamics of type-I intermittency[J]. Physical Review A, 1992, 46(1): 676-678.

[61] Wang H P, Chen X, Zhao L J. Experimental observation of intermittent chaos in a three-section monolithically integrated semiconductor laser[J]. Progress in Electromagnetic Research Symposium, 2016: 4867-4870.

[62] Bosco A K D, Akizawa Y, Kanno K. Photonic integrated circuits unveil crisis-induced intermittency[J]. Optics Express, 2016, 24(19): 22198-22209.

[63] Andreas K D B, Sato N, Terashima Y. Random number generation from intermittent optical chaos[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(6).

柴萌萌, 乔丽君, 张明江, 卫晓晶, 杨强, 徐红春. 光子集成混沌半导体激光器研究进展(特邀)[J]. 红外与激光工程, 2020, 49(12): 20201066. Mengmeng Chai, Lijun Qiao, Mingjiang Zhang, Xiaojing Wei, Qiang Yang, Hongchun Xu. Progress in photonic integrated chaotic semiconductor laser (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201066.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!