应用光学, 2019, 40 (3): 505, 网络出版: 2019-06-10   

超高速相干光通信两步步长优化CMA算法

Two-step stage optimized CMA algorithm in super-high coherent optical telecommunications
作者单位
清华大学 精密仪器系 精密测试技术与仪器国家重点实验室,北京 100084
引用该论文

钟昆, 杨怀栋. 超高速相干光通信两步步长优化CMA算法[J]. 应用光学, 2019, 40(3): 505.

ZHONG Kun, YANG Huaidong. Two-step stage optimized CMA algorithm in super-high coherent optical telecommunications[J]. Journal of Applied Optics, 2019, 40(3): 505.

参考文献

[1] BIRK M, GERARD P, CURTO R, et al. Field trial of a real-time, single wavelength, coherent 100 Gbit/s PM-QPSK channel upgrade of an installed 1800km link[C]. //Optical Fiber Communications/National Fiber Optic Engineers Conference, USA:IEEE,2010.

[2] ZHANG J W, YU J J, ZHU B Y, et al. Transmission of single-carrier 400G signals (515.2-Gb/s) based on 128.8-GBaud PDM QPSK over 10,130- and 6,078 km terrestrial fiber links[J]. Optics Express, 2015, 23(13):16540-16545.

[3] XU T H, LI J, JACOBSEN G, et al. Field trial over 820 km installed SSMF and its potential Terabit/s superchannel application with up to 57.5-Gbaud DP-QPSK transmission[J]. Optics Communications, 2015, 353:133-138.

[4] XU C, GAO G J, CHEN S, et al. Sub-symbol-rate sampling for PDM-QPSK signals in super-Nyquist WDM systems using quadrature poly-binary shaping[J]. Optics Express, 2016, 24(33):26678-26686.

[5] LIU B, WU Z C, FU S N, et al. On-field measurement trial of 4x128 Gbps PDM-QPSK signals by linear optical sampling[J]. Optics Communications, 2017, 384:36-40.

[6] DONG Z, YU J J, JIA Z S, et al. 7x224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation[J]. IEEE Photonics Technology Letters, 2012, 24(13):1157-1159.

[7] 吴琦, 薛海东, 刘召庆, 等. 高速Cameralink视频信号的光纤传输系统设计[J]. 应用光学, 2018, 39(2): 284-289.

    WU Qi, XUE Haidong, LIU Zhaoqing, et al. Design of optical fiber transmission system for high speed Cameralink video signal[J]. Journal of Applied Optics, 2018, 39(2): 284-289.

[8] 李唐军,王目光,张建勇,等. 光纤通信原理[M]. 北京:清华大学出版社, 北京交通大学出版社, 2015: 106-137.

    LI Tangjun, WANG Muguang, ZHANG Jianyong, et al. Fiber communications theory[M]. Beijing: Tsinghua University Press, Beijing Jiaotong University Press, 2015:106-137.

[9] 陶金晶.高速相干光通信系统中关键技术的研究[D].北京:北京邮电大学,2014.

    TAO Jinjing. Research on several key technologies for high-speed coherent optical communication systems[D]. Beijing: Beijing University of Posts and Telecommunications, 2014.

[10] 易小刚.数字相干PM-QPSK光传输系统中的非线性损伤与系统的性能估计[D].北京:北京邮电大学,2013.

    YI Xiaogang. Nonlinearities in digital coherent PM-QPSK transmission systems and estimation of system performance[D]. Beijing: Beijing University of Posts and Telecommunications,2013.

[11] ROUDAS I, VGENIS A, PETROU C S, et al. Optimal polarization demultiplexing for coherent optical communications systems[J]. Journal of Lightwave Technology, 2010, 28(7):1121-1134.

[12] 易安林. 偏振复用光通信系统处理技术研究[D]. 成都:西南交通大学, 2013.

    YI Anlin. Signal processing technologies in polarization division multiplexing systems[D]. Chengdu: Southwest Jiaotong University, 2013.

[13] 缪厚勋. 光纤通信系统中的偏振模色散补偿[D]. 北京:清华大学,2004.

    MIAO Houxun. Polarization mode dispersion compensation in optical fiber communication systems[D]. Beijing: Tsinghua University, 2004.

[14] ZHOU J H, ZHENG G Z, WU J J. Constant modulus algorithm with reduced probability of singularity enabled by PDL mitigation[J]. Journal of Lightwave Technology, 2017, 35(13): 2685-2694.

[15] KOGELNIK H, JOPSON R M, NELSON L E. Optical fiber telecommunications IV (Vol. B)[M]. San Diego: Academic Press,2002: 725-861.

[16] ANDREAS L, NORIAKI K, CHEN Y K, et al. A real-time CMA-based 10 Gb/s polarization demultiplexing coherent receiver implemented in an FPGA[C]. Optical Fiber Communications/National Fiber Optics Engineers Conference, USA:IEEE,2008.

[17] KANEDA N, LEVEN A. Coherent polarization-division-multiplexed QPSK receiver with fractionally spaced CMA for PMD compensation[J]. IEEE Photonics Technology Letters, 2009, 21(4): 203-205.

[18] JOHANNISSON P, SJDIN M, KARLSSON M, et al. Modified constant modulus algorithm for polarization-switched QPSK[J]. Optics Express, 2011, 19(8): 7734-7741.

[19] 刘显著, 王天枢, 陈俊达, 等. 采用QPSK调制的50 Gbit/s高速大气激光通信传输特性研究[J]. 应用光学, 2018, 39(5): 757-761.

    LIU Xianzhu, WANG Tianshu, CHEN Junda, et al. Transmission performance of 50 Gbit/s high-speed laser communications with QPSK modulation[J]. Journal of Applied Optics, 2018, 39(5): 757-761.

[20] 崔云鹏. 偏振复用系统中解复用技术的研究[D]. 长春: 吉林大学, 2011.

    CUI Yunpeng. Research on polarization demultiplexing technology in polarization multiplexing system[D]. Changchun: Jilin University, 2011.

[21] 李新. 相干检测中的DSP算法和仿真研究[D]. 北京: 北京邮电大学, 2012.

    LI Xin. Research on DSP algorithm and simulation in optical coherent detection[D]. Beijing: Beijing University of Posts and Telecom, 2012.

[22] 邸雪静, 童程, 张霞, 等. 高速相干光通信系统中的自适应步长恒模算法[J]. 光学学报, 2012, 32(10): 53-57.

    DI Xuejing, TONG Cheng, ZHANG Xia, et al. Adaptive step-size constant-modulus algorithm for high-speed optical coherent communication system[J]. Acta Optica Sinica, 2012, 32(10) : 53-57.

钟昆, 杨怀栋. 超高速相干光通信两步步长优化CMA算法[J]. 应用光学, 2019, 40(3): 505. ZHONG Kun, YANG Huaidong. Two-step stage optimized CMA algorithm in super-high coherent optical telecommunications[J]. Journal of Applied Optics, 2019, 40(3): 505.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!