激光与光电子学进展, 2019, 56 (3): 030001, 网络出版: 2019-07-31  

基于受激布里渊散射效应的硫系玻璃光器件研究进展 下载: 1504次

Research Progress on Chalcogenide Glass Photonic Devices Based on Stimulated Brillouin Scattering
作者单位
1 宁波大学高等技术研究院红外材料及器件实验室, 浙江 宁波 315211
2 上海交通大学区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240
引用该论文

戴世勋, 王莹莹, 李杏, 杨佩龙, 张培晴, 王训四, 义理林. 基于受激布里渊散射效应的硫系玻璃光器件研究进展[J]. 激光与光电子学进展, 2019, 56(3): 030001.

Shixun Dai, Yingying Wang, Xing Li, Peilong Yang, Peiqing Zhang, Xunsi Wang, Lilin Yi. Research Progress on Chalcogenide Glass Photonic Devices Based on Stimulated Brillouin Scattering[J]. Laser & Optoelectronics Progress, 2019, 56(3): 030001.

参考文献

[1] Agrawal GP. Nonlinear fiber optics[J].Cambridge: Academic Press, 2007.

[2] Ippen E P, Stolen R H. Stimulated Brillouin scattering in optical fibers[J]. Applied Physics Letters, 1972, 21(11): 539-541.

[3] Smith R G. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering[J]. Applied Optics, 1972, 11(11): 2489-2494.

[4] Tkach R W, Chraplyvy A R, Derosier R M. Spontaneous Brillouin scattering for single-mode optical-fibre characterisation[J]. Electronics Letters, 1986, 22(19): 1011-1013.

[5] Ferreira M F. Impact of stimulated Brillouin scattering in optical fibers with distributed gain[J]. Journal of Lightwave Technology, 1995, 13(8): 1692-1697.

[6] Yeniay A, Delavaux J M, Toulouse J. Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers[J]. Journal of Lightwave Technology, 2002, 20(8): 1425-1432.

[7] Mountfort FH, YooS, Boyland AJ, et al. Temperature effect on the Brillouin gain spectra of highly doped aluminosilicate fibers[C]∥Conference on Lasers and Electro-Optics Europe and 12 th European Quantum Electronics Conference , 2011: CE_P23.

[8] Levy S, Lyubin V, Klebanov M, et al. Stimulated Brillouin scattering amplification in centimeter-long directly written chalcogenide waveguides[J]. Optics Letters, 2012, 37(24): 5112-5114.

[9] Kobyakov A, Sauer M, Chowdhury D. Stimulated Brillouin scattering in optical fibers[J]. Advances in Optics and Photonics, 2010, 2(1): 1-59.

[10] 沈一春, 宋牟平, 章献民, 等. 单模光纤中受激布里渊散射阈值研究[J]. 中国激光, 2005, 32(4): 497-500.

    Shen Y C, Song M P, Zhang X M, et al. Analysis and measurement of stimulated Brillouin scattering threshold in single mode fiber[J]. Chinese Journal of Lasers, 2005, 32(4): 497-500.

[11] Chraplyvy A R. Limitations on lightwave communications imposed by optical-fiber nonlinearities[J]. Journal of Lightwave Technology, 1990, 8(10): 1548-1557.

[12] Hu K, Kabakova I V. Büttner T F S, et al. Low-threshold Brillouin laser at 2 μm based on suspended-core chalcogenide fiber[J]. Optics Letters, 2014, 39(16): 4651-4654.

[13] Geng J H, Staines S, Wang Z L, et al. Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth[J]. IEEE Photonics Technology Letters, 2006, 18(17): 1813-1815.

[14] Philippov V, Codemard C, Jeong Y, et al. High-energy in-fiber pulse amplification for coherent lidar applications[J]. Optics Letters, 2004, 29(22): 2590-2592.

[15] 詹黎, 顾照昶, 邢亮, 等. 光纤布里渊激光器和放大器的研究进展及其应用[J]. 中国激光, 2010, 37(4): 901-911.

    Zhan L, Gu Z C, Xing L, et al. Advances of fiber Brillouin lasers and amplifiers and their applications[J]. Chinese Journal of Lasers, 2010, 37(4): 901-911.

[16] Song K Y, Abedin K S, Hotate K, et al. Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber[J]. Optics Express, 2006, 14(13): 5860-5865.

[17] Marpaung D, Morrison B, Pagani M, et al. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity[J]. Optica, 2015, 2(2): 76-83.

[18] Wei W, Yi L L, Jaouën Y, et al. Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber[J]. Optics Express, 2014, 22(19): 23249-23260.

[19] Korb C L, Gentry B M, Li S X, et al. Theory of the double-edge technique for Doppler lidar wind measurement[J]. Applied Optics, 1998, 37(15): 3097-3104.

[20] Chin S, Thévenaz L, Sancho J, et al. Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers[J]. Optics Express, 2010, 18(21): 22599-22613.

[21] Thielen P A, Shaw L B, Pureza P C, et al. Small-core As-Se fiber for Raman amplification[J]. Optics Letters, 2003, 28(16): 1406-1408.

[22] Abedin K S. Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber[J]. Optics Express, 2005, 13(25): 10266-10271.

[23] Abedin K S. Single-frequency Brillouin lasing using single-mode As2Se3 chalcogenide fiber[J]. Optics Express, 2006, 14(9): 4037-4042.

[24] 王振宝, 邵碧波, 张磊, 等. 光纤受激布里渊散射阈值分析与实验研究[J]. 激光与光电子学进展, 2011, 48(9): 090603.

    Wang Z B, Shao B B, Zhang L, et al. Analysis and measurement of stimulated Brillouin scattering threshold in fiber[J]. Laser & Optoelectronics Progress, 2011, 48(9): 090603.

[25] Abedin K S. Stimulated Brillouin scattering in single-mode tellurite glass fiber[J]. Optics Express, 2006, 14(24): 11766-11772.

[26] Florea C, Bashkansky M, Dutton Z, et al. Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers[J]. Optics Express, 2006, 14(25): 12063-12070.

[27] Ahmad H, Shahi S, Harun S W. Bismuth-based erbium-doped fiber as a gain medium for L-band amplification and Brillouin fiber laser[J]. Laser Physics, 2010, 20(3): 716-719.

[28] Ogusu K, Li H P, Kitao M. Brillouin-gain coefficients of chalcogenide glasses[J]. Journal of the Optical Society of America B, 2004, 21(7): 1302-1304.

[29] Sonehara T, Kaminaga H, Tatsu E, et al. Frequency-modulated stimulated Brillouin spectroscopy in high-refractive-index glasses[J]. Journal of Non-Crystalline Solids, 2008, 354(15/16): 1768-1773.

[30] Beugnot J C, Ahmad R, Rochette M, et al. Reduction and control of stimulated Brillouin scattering in polymer-coated chalcogenide optical microwires[J]. Optics Letters, 2014, 39(3): 482-485.

[31] Fortier C, Fatome J, Pitois S, et al. Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber[J]. Optics Express, 2008, 16(13): 9398-9404.

[32] Tow K H, Léguillon Y, Besnard P, et al. Brillouin fiber laser using As38Se62 suspended-core chalcogenide fiber[J]. Proceedings of SPIE, 2012, 8426: 842611.

[33] Cherif R, Salem A B, Zghal M. Full modal analysis of the stimulated Brillouin scattering in As2Se3 chalcogenide photonic crystal fiber[J]. Proceedings of SPIE, 2011, 8073: 80732R.

[34] Abidi I, Cherif R, Zghal M. Enhanced stimulated Brillouin scattering in chalcogenide elliptical photonic crystal fibres[J]. Proceedings of SPIE, 2015, 9347: 934719.

[35] Chen X, Xia L, Li W, et al. Simulation of Brillouin gain properties in a double-clad As2Se3 chalcogenide photonic crystal fiber[J]. Chinese Optics Letters, 2017, 15(4): 042901.

[36] Xu Q, Gao W Q, Li X, et al. Investigation on optical and acoustic fields of stimulated Brillouin scattering in As2S3 suspended-core microstructured optical fibers[J]. Optik, 2017, 133: 51-59.

[37] Cheng T L, Liao M S, Gao W Q, et al. Suppression of stimulated Brillouin scattering in all-solid chalcogenide-tellurite photonic bandgap fiber[J]. Optics Express, 2012, 20(27): 28846-28854.

[38] Tow K H, Léguillon Y, Besnard P, et al. Relative intensity noise and frequency noise of a compact Brillouin laser made of AS38Se62 suspended-core chalcogenide fiber[J]. Optics Letters, 2012, 37(7): 1157-1159.

[39] Tow K H, Leguillon Y, Fresnel S, et al. Toward more coherent sources using a microstructured chalcogenide brillouin fiber laser[J]. IEEE Photonics Technology Letters, 2013, 25(3): 238-241.

[40] Florea C, Bashkansky M, Sanghera J, et al. Slow-light generation through Brillouin scattering in As2S3 fibers[J]. Optical Materials, 2009, 32(2): 358-361.

[41] Sinha R K, Kumar A, Saini T S. Analysis and design of single-mode As2Se3-chalcogenide photonic crystal fiber for generation of slow light with tunable features[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(2): 4900706.

[42] Büttner T F S, Kabakova I V, Hudson D D, et al. . Phase-locking and pulse generation in multi-frequency brillouin oscillator via four wave mixing[J]. Scientific Reports, 2015, 4: 5032.

[43] Pant R, Poulton C G, Choi D Y, et al. On-chip stimulated Brillouin scattering[J]. Optics Express, 2011, 19(9): 8285-8290.

[44] Pant R, Li E, Choi D Y, et al. Cavity enhanced stimulated Brillouin scattering in an optical chip for multiorder Stokes generation[J]. Optics Letters, 2011, 36(18): 3687-3689.

[45] Kabakova I V, Pant R, Choi D Y, et al. Narrow linewidth Brillouin laser based on chalcogenide photonic chip[J]. Optics Letters, 2013, 38(17): 3208-3211.

[46] Büttner T F S, Merklein M, Kabakova I V, et al. . Phase-locked, chip-based, cascaded stimulated Brillouin scattering[J]. Optica, 2014, 1(5): 311-314.

[47] Pant R, Marpaung D, Kabakova I V, et al. On-chip stimulated Brillouin Scattering for microwave signal processing and generation[J]. Laser & Photonics Reviews, 2014, 8(5): 653-666.

[48] Merklein M, Casas-Bedoya A, Marpaung D, et al. Stimulated brillouin scattering in photonic integrated circuits: novel applications and devices[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(2): 6100111.

[49] Yi L L, Wei W. Jaou n Y, et al. Polarization-independent rectangular microwave photonic filter based on stimulated Brillouin scattering [J]. Journal of Lightwave Technology, 2016, 34(2): 669-675.

[50] Zhang W W, Minasian R A. Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering[J]. IEEE Photonics Technology Letters, 2011, 23(23): 1775-1777.

[51] Xing C, Ke C J, Zhang K, et al. Polarization- and wavelength-independent SBS-based filters for high resolution optical spectrum measurement[J]. Optics Express, 2017, 25(18): 20969-20982.

[52] Byrnes A, Pant R, Li E B, et al. Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering[J]. Optics Express, 2012, 20(17): 18836-18845.

[53] Morrison B, Marpaung D, Pant R, et al. Tunable microwave photonic notch filter using on-chip stimulated Brillouin scattering[J]. Optics Communications, 2014, 313: 85-89.

戴世勋, 王莹莹, 李杏, 杨佩龙, 张培晴, 王训四, 义理林. 基于受激布里渊散射效应的硫系玻璃光器件研究进展[J]. 激光与光电子学进展, 2019, 56(3): 030001. Shixun Dai, Yingying Wang, Xing Li, Peilong Yang, Peiqing Zhang, Xunsi Wang, Lilin Yi. Research Progress on Chalcogenide Glass Photonic Devices Based on Stimulated Brillouin Scattering[J]. Laser & Optoelectronics Progress, 2019, 56(3): 030001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!