光学学报, 2019, 39 (7): 0714004, 网络出版: 2019-07-16  

激光惯性约束聚变装置靶室内电磁脉冲环境的理论研究 下载: 890次

Theoretical Research for Electromagnetic Pulse Environments in Laser Inertial Confinement Fusion Chambers
孟萃 1,2,*徐志谦 1,2金晗冰 1,2姜云升 1,2吴平 1,2
作者单位
1 清华大学工程物理系, 北京 100084
2 粒子技术与辐射成像教育部重点实验室, 北京 100084
引用该论文

孟萃, 徐志谦, 金晗冰, 姜云升, 吴平. 激光惯性约束聚变装置靶室内电磁脉冲环境的理论研究[J]. 光学学报, 2019, 39(7): 0714004.

Cui Meng, Zhiqian Xu, Hanbing Jin, Yunsheng Jiang, Ping Wu. Theoretical Research for Electromagnetic Pulse Environments in Laser Inertial Confinement Fusion Chambers[J]. Acta Optica Sinica, 2019, 39(7): 0714004.

参考文献

[1] 朱健强, 陈绍和, 郑玉霞, 等. 神光-II激光装置研制[J]. 中国激光, 2019, 46(1): 0100002.

    Zhu J Q, Chen Z H, Zheng Y X, et al. Review on the development of Shenguang-II laser facility[J]. Chinese Journal of Lasers, 2019, 46(1): 0100002.

[2] 郑万国, 魏晓峰, 朱启华, 等. 神光-III主机装置成功实现60 TW/180 kJ三倍频激光输出[J]. 强激光与粒子束, 2016, 28(1): 091901.

    Zheng W G, Wei X F, Zhu Q H, et al. SG-III laser facility has successfully achieved 60 TW/180 kJ ultraviolet laser (351 nm) output[J]. High Power Laser and Particle Beams, 2016, 28(1): 091901.

[3] Pérez F, Kay J J, Patterson J R, et al. Efficient laser-induced 6-8 keV X-ray production from iron oxide aerogel and foil-lined cavity targets[J]. Physics of Plasmas, 2012, 19(8): 083101.

[4] Brown C G, Bond E. Clancy T, et al. Assessment and mitigation of electromagnetic pulse (EMP) impacts at short-pulse laser facilities[J]. Journal of Physics: Conference Series, 2010, 244(3): 032001.

[5] Dubois J L, Lubrano-Lavaderci F, Raffestin D, et al. Target charging in short-pulse-laser-plasma experiments[J]. Physical Review E, 2014, 89: 013102.

[6] Lion C. The LMJ program: an overview[J]. Journal of Physics: Conference Series, 2010, 244(1): 012003.

[7] Fournier K B, Satcher J H, May M J, et al. Absolute X-ray yields from laser-irradiated germanium-doped low-density aerogels[J]. Physics of Plasmas, 2009, 16(5): 052703.

[8] Jacquet L, Girard F, Primout M, et al. Multi-keV X-ray sources from metal-lined cylindrical hohlraums[J]. Physics of Plasmas, 2012, 19(8): 083301.

[9] de Marco M, Pfeifer M, Krousky E, et al. . Basic features of electromagnetic pulse generated in a laser-target chamber at 3-TW laser facility PALS[J]. Journal of Physics: Conference Series, 2014, 508: 012007.

[10] Fournier K B, May M J, Colvin J D, et al. Demonstration of a 13-keV KrK-shell X-ray source at the National Ignition Facility[J]. Physical Review E, 2013, 88(3): 033104.

[11] May M J, Fournier K B, Colvin J D, et al. Bright X-ray stainless steel K-shell source development at the National Ignition Facility[J]. Physics of Plasmas, 2015, 22(6): 063305.

[12] 孟萃, 杨超, 李鑫, 等. 高功率激光装置电磁环境研究进展[J]. 太赫兹科学与电子信息学报, 2017, 15(1): 70-74.

    Meng C, Yang C, Li X, et al. Development of electromagnetic environment research of high power laser facility[J]. Journal of Terahertz Science and Electronic Information Technology, 2017, 15(1): 70-74.

[13] Jin H B, Meng C, Jiang Y S, et al. Simulation of electromagnetic pulses generated by escaped electrons in a high-power laser chamber[J]. Plasma Science and Technology, 2018, 20(11): 115201.

[14] Meng C, Xu Z Q, Jiang Y S, et al. Numerical simulation of the SGEMP inside a target chamber of a laser inertial confinement facility[J]. IEEE Transactions on Nuclear Science, 2017, 64(10): 2618-2625.

[15] MengC, Xu ZQ. Numerical simulation of EMP environment radiated by X-rays inside a high-power laser facility[C]∥2018 International Applied Computational Electromagnetics Society Symposium in Denver, March 25-29, 2018. Denver, Co, USA. New York: IEEE, 2018: 17803175.

[16] Beers B L. Radiation-induced signals in cables-II[J]. IEEE Transactions on Nuclear Science, 1977, 24(6): 2429-2434.

[17] Xu Z Q, Meng C. Evaluation of cable SGEMP response using Monte Carlo and finite-difference time-domain methods[J]. IEEE Transactions on Nuclear Science, 2017, 64(11): 2829-2836.

[18] 李进玺, 程引会, 周辉, 等. 用传输线和时域有限差分法计算电缆X射线响应[J]. 强激光与粒子束, 2007, 19(12): 2079-2082.

    Li J X, Cheng Y H, Zhou H, et al. Calculation of coaxial line X-ray responses by transmission line method and finite difference time domain method[J]. High Power Laser and Particle Beams, 2007, 19(12): 2079-2082.

孟萃, 徐志谦, 金晗冰, 姜云升, 吴平. 激光惯性约束聚变装置靶室内电磁脉冲环境的理论研究[J]. 光学学报, 2019, 39(7): 0714004. Cui Meng, Zhiqian Xu, Hanbing Jin, Yunsheng Jiang, Ping Wu. Theoretical Research for Electromagnetic Pulse Environments in Laser Inertial Confinement Fusion Chambers[J]. Acta Optica Sinica, 2019, 39(7): 0714004.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!