中国激光, 2019, 46 (3): 0311001, 网络出版: 2019-05-09  

近红外外差光谱温室气体柱浓度的探测方法 下载: 1036次

Measurement Method of Atmospheric Column Concentration of Greenhouse Gas Based on Near Infrared Heterodyne Spectroscopy
作者单位
1 中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学研究生院科学岛分院, 安徽 合肥 230026
引用该论文

邓昊, 杨晨光, 管林强, 许振宇, 姚路, 阚瑞峰, 何亚柏. 近红外外差光谱温室气体柱浓度的探测方法[J]. 中国激光, 2019, 46(3): 0311001.

Hao Deng, Chenguang Yang, Linqiang Guan, Zhenyu Xu, Lu Yao, Ruifeng Kan, Yabai He. Measurement Method of Atmospheric Column Concentration of Greenhouse Gas Based on Near Infrared Heterodyne Spectroscopy[J]. Chinese Journal of Lasers, 2019, 46(3): 0311001.

参考文献

[1] Delahaigue A, Courtois D, Thiébeaux C, et al. Atmospheric laser heterodyne detection[J]. Infrared Physics & Technology, 1996, 37(1): 7-12.

[2] Menzies R T, Shumate M S. Remote measurements of ambient air pollutants with a bistatic laser system[J]. Applied Optics, 1976, 15(9): 2080-2084.

[3] Menzies R T, Seals R K. Ozone monitoring with an infrared heterodyne radiometer[J]. Science, 1977, 197(4310): 1275-1277.

[4] Hinkley E D, Kelley P L. Detection of air pollutants with tunable diode lasers[J]. Science, 1971, 171(3972): 635-639.

[5] Weidmann D, Courtois D. Passive remote detection in a combustion system with a tunable heterodyne receiver: application to sulfur dioxide[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 83(3/4): 655-666.

[6] Schmülling F, Klumb B, Harter M, et al. High-sensitivity mid-infrared heterodyne spectrometer with a tunable diode laser as a local oscillator[J]. Applied Optics, 1998, 37(24): 5771-5776.

[7] Mumma M, Kostiuk T, Cohen S, et al. Infrared heterodyne spectroscopy of astronomical and laboratory sources at 8.5 μm[J]. Nature, 1975, 253(5492): 514-516.

[8] 孙广伟, 魏芳, 张丽, 等. 基于保偏光纤光栅的低噪声外腔半导体激光器[J]. 中国激光, 2018, 45(6): 0601004.

    Sun G W, Wei F, Zhang L, et al. Low-noise external cavity semiconductor lasers based on polarization-maintaining fiber Bragg gratings[J]. Chinese Journal of Lasers, 2018, 45(6): 0601004.

[9] 杜娟, 孙延光, 陈迪俊, 等. 小型化碘稳频1064 nm半导体激光器研究[J]. 中国激光, 2018, 45(7): 0701006.

    Du J, Sun Y G, Chen D J, et al. Research of a compact iodine-stabilized diode laser at 1064 nm[J]. Chinese Journal of Lasers, 2018, 45(7): 0701006.

[10] Sonnabend G, Wirtz D, Vetterle V, et al. High-resolution observations of Martian non-thermal CO2 emission near 10 μm with a new tuneable heterodyne receiver[J]. Astronomy & Astrophysics, 2005, 435(3): 1181-1184.

[11] Weidmann D, Reburn W J, Smith K M. Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies[J]. Review of Scientific Instruments, 2007, 78(7): 073107.

[12] Weidmann D, Wysocki G. High-resolution broadband (>100 cm -1) infrared heterodyne spectro-radiometry using an external cavity quantum cascade laser [J]. Optics Express, 2009, 17(1): 248-259.

[13] Nakagawa H, Aoki S, Sagawa H, et al. IR heterodyne spectrometer MILAHI for continuous monitoring observatory of Martian and Venusian atmospheres at Mt. Haleakalā, Hawaii[J]. Planetary and Space Science, 2016, 126: 34-48.

[14] Weidmann D, Perrett B J, Macleod N A, et al. Hollow waveguide photomixing for quantum cascade laser heterodyne spectro-radiometry[J]. Optics Express, 2011, 19(10): 9074-9085.

[15] Wilson E L. McLinden M L, Miller J H, et al. Miniaturized laser heterodyne radiometer for measurements of CO2 in the atmospheric column[J]. Applied Physics B, 2014, 114(3): 385-393.

[16] Rodin A, Klimchuk A, Nadezhdinskiy A, et al. High resolution heterodyne spectroscopy of the atmospheric methane NIR absorption[J]. Optics Express, 2014, 22(11): 13825-13834.

[17] Kurtz J. O'Byrne S. Multiple receivers in a high-resolution near-infrared heterodyne spectrometer[J]. Optics Express, 2016, 24(21): 23838-23848.

[18] 谈图, 曹振松, 王贵师, 等. 4.4 μm中红外激光外差光谱探测技术研究[J]. 光谱学与光谱分析, 2015, 35(6): 1516-1519.

    Tan T, Cao Z S, Wang G S, et al. Study on the technology of the 4.4 μm mid-infrared laser heterodyne spectrum[J]. Spectroscopy and Spectral Analysis, 2015, 35(6): 1516-1519.

[19] Parvitte B, Zéninari V, Thiébeaux C, et al. Infrared laser heterodyne systems[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004, 60(5): 1193-1213.

[20] 田园, 孙友文, 谢品华, 等. 高分辨率傅里叶变换红外光谱反演环境大气中CO2浓度的质量优化方法[J]. 光谱学与光谱分析, 2017, 37(1): 48-53.

    Tian Y, Sun Y W, Xie P H, et al. Quality optimization method for ambient CO2 inversion of high resolution Fourier transform infrared spectrum[J]. Spectroscopy and Spectral Analysis, 2017, 37(1): 48-53.

邓昊, 杨晨光, 管林强, 许振宇, 姚路, 阚瑞峰, 何亚柏. 近红外外差光谱温室气体柱浓度的探测方法[J]. 中国激光, 2019, 46(3): 0311001. Hao Deng, Chenguang Yang, Linqiang Guan, Zhenyu Xu, Lu Yao, Ruifeng Kan, Yabai He. Measurement Method of Atmospheric Column Concentration of Greenhouse Gas Based on Near Infrared Heterodyne Spectroscopy[J]. Chinese Journal of Lasers, 2019, 46(3): 0311001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!