Photonics Research, 2016, 4 (3): 03000A16, Published Online: Sep. 29, 2016  

Nonlinear terahertz metamaterial perfect absorbers using GaAs [Invited] Download: 1090次

Author Affiliations
1 Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, Massachusetts 02215, USA
2 Department of Physics, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA
3 Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, USA
4 e-mail: raveritt@ucsd.edu
Copy Citation Text

Xiaoguang Zhao, Jingdi Zhang, Kebin Fan, Guangwu Duan, Grace D. Metcalfe, Michael Wraback, Xin Zhang, Richard D. Averitt. Nonlinear terahertz metamaterial perfect absorbers using GaAs [Invited][J]. Photonics Research, 2016, 4(3): 03000A16.

References

[1] N. I. Zheludev, Y. S. Kivshar. From metamaterials to metadevices. Nat. Mater., 2012, 11: 917-924.

[2] J. B. Pendry, A. J. Holden, D. Robbins, W. Stewart. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech., 1999, 47: 2075-2084.

[3] I. V. Shadrivov, A. B. Kozyrev, D. W. van der Weide, Y. S. Kivshar. Tunable transmission and harmonic generation in nonlinear metamaterials. Appl. Phys. Lett., 2008, 93: 161903.

[4] M. Lapine, I. V. Shadrivov, D. A. Powell, Y. S. Kivshar. Magnetoelastic metamaterials. Nat. Mater., 2012, 11: 30-33.

[5] A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, P. A. Belov. Flexible helices for nonlinear metamaterials. Adv. Mater., 2013, 25: 3409-3412.

[6] M. W. Klein, C. Enkrich, M. Wegener, S. Linden. Second-harmonic generation from magnetic metamaterials. Science, 2006, 313: 502-504.

[7] K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, X. Zhang. Predicting nonlinear properties of metamaterials from the linear response. Nat. Mater., 2015, 14: 379-383.

[8] J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, J. F. O’Hara. Terahertz chiral metamaterials with giant and dynamically tunable optical activity. Phys. Rev. B, 2012, 86: 035448.

[9] M. Lapine, I. V. Shadrivov, Y. S. Kivshar. Colloquium: nonlinear metamaterials. Rev. Mod. Phys., 2014, 86: 1093-1123.

[10] A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish. Liquid crystal based nonlinear fishnet metamaterials. Appl. Phys. Lett., 2012, 100: 121113.

[11] G. Keiser, K. Fan, X. Zhang, R. Averitt. Towards dynamic, tunable, and nonlinear metamaterials via near field interactions: a review. J. Infrared Millim. Terahertz Waves, 2013, 34: 709-723.

[12] M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, N. Park. Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit. Nat. Photonics, 2009, 3: 152-156.

[13] C. A. Werley, K. Fan, A. C. Strikwerda, S. M. Teo, X. Zhang, R. D. Averitt, K. A. Nelson. Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements. Opt. Express, 2012, 20: 8551-8567.

[14] M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature, 2012, 487: 345-348.

[15] K. Iwaszczuk, M. Zalkovskij, A. C. Strikwerda, P. U. Jepsen. Nitrogen plasma formation through terahertz-induced ultrafast electron field emission. Optica, 2015, 2: 116-123.

[16] J. Zhang, X. Zhao, K. Fan, X. Wang, G.-F. Zhang, K. Geng, X. Zhang, R. D. Averitt. Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna. Appl. Phys. Lett., 2015, 107: 231101.

[17] A. C. Strikwerda, M. Zalkovskij, K. Iwaszczuk, D. L. Lorenzen, P. U. Jepsen. Permanently reconfigured metamaterials due to terahertz induced mass transfer of gold. Opt. Express, 2015, 23: 11586-11599.

[18] C. Lange, T. Maag, M. Hohenleutner, S. Baierl, O. Schubert, E. Edwards, D. Bougeard, G. Woltersdorf, R. Huber. Extremely nonperturbative nonlinearities in GaAs driven by atomically strong terahertz fields in gold metamaterials. Phys. Rev. Lett., 2014, 113: 227401.

[19] K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, R. D. Averitt. Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs. Phys. Rev. Lett., 2013, 110: 217404.

[20] A. T. Tarekegne, K. Iwaszczuk, M. Zalkovskij, A. C. Strikwerda, P. U. Jepsen. Impact ionization in high resistivity silicon induced by an intense terahertz field enhanced by an antenna array. New J. Phys., 2015, 17: 043002.

[21] W. Kuehn, P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, R. Hey. Terahertz-induced interband tunneling of electrons in GaAs. Phys. Rev. B, 2010, 82: 075204.

[22] F. Su, F. Blanchard, G. Sharma, L. Razzari, A. Ayesheshim, T. Cocker, L. Titova, T. Ozaki, J.-C. Kieffer, R. Morandotti. Terahertz pulse induced intervalley scattering in photoexcited GaAs. Opt. Express, 2009, 17: 9620-9629.

[23] H. Hirori, K. Shinokita, M. Shirai, S. Tani, Y. Kadoya, K. Tanaka. Extraordinary carrier multiplication gated by a picosecond electric field pulse. Nat. Commun., 2011, 2: 594.

[24] H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, A. J. Taylor. Antireflection coating using metamaterials and identification of its mechanism. Phys. Rev. Lett., 2010, 105: 073901.

[25] H.-T. Chen. Interference theory of metamaterial perfect absorbers. Opt. Express, 2012, 20: 7165-7172.

[26] L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, H.-T. Chen. Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers. Appl. Phys. Lett., 2012, 101: 101102.

[27] SerenH. R.ZhangJ.KeiserG. R.MaddoxS. J.ZhaoX.FanK.BankS. R.ZhangX.AverittR. D., “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” arXiv: 1508.03183 (2015).

[28] K.-H. Lin, C. A. Werley, K. A. Nelson. Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials. Appl. Phys. Lett., 2009, 95: 103304.

[29] H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt. Active terahertz metamaterial devices. Nature, 2006, 444: 597-600.

[30] H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, R. D. Averitt. Optically modulated multiband terahertz perfect absorber. Adv. Opt. Mater., 2014, 2: 1221-1226.

[31] .

[32] L. V. Keldysh. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP, 1965, 20: 1307-1314.

[33] C. L. Anderson, C. R. Crowell. Threshold energies for electron-hole pair production by impact ionization in semiconductors. Phys. Rev. B, 1972, 5: 2267-2272.

[34] H. Bergner, V. Brückner, M. Lenzner, R. Strobel. Investigation of the field-dependent carrier mobility in GaAs by picosecond photoconductivity measurements. Phys. Stat. Sol. B, 1988, 150: 885-889.

[35] X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, X. Zhang. Optically tunable metamaterial perfect absorber on highly flexible substrate. Sens. Actuators A, 2015, 231: 74-80.

Xiaoguang Zhao, Jingdi Zhang, Kebin Fan, Guangwu Duan, Grace D. Metcalfe, Michael Wraback, Xin Zhang, Richard D. Averitt. Nonlinear terahertz metamaterial perfect absorbers using GaAs [Invited][J]. Photonics Research, 2016, 4(3): 03000A16.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!