Photonics Research, 2020, 8 (9): 09001448, Published Online: Aug. 19, 2020   

Low-temperature GaAs-based plasmonic photoconductive terahertz detector with Au nano-islands Download: 662次

Author Affiliations
Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-08771, Japan
Copy Citation Text

Hironaru Murakami, Tomoya Takarada, Masayoshi Tonouchi. Low-temperature GaAs-based plasmonic photoconductive terahertz detector with Au nano-islands[J]. Photonics Research, 2020, 8(9): 09001448.

References

[1] M. Tonouchi. Cutting-edge terahertz technology. Nat. Photonics, 2007, 1: 97-105.

[2] B. Ferguson, X. C. Zhang. Materials for terahertz science and technology. Nat. Mater., 2002, 1: 26-33.

[3] J. B. Baxter, G. W. Guglietta. Terahertz spectroscopy. Anal. Chem., 2004, 83: 4342-4368.

[4] D. S. Rana, M. Tonouchi. Terahertz emission functionality of high-temperature superconductors and similar complex systems. Adv. Opt. Mater., 2019, 8.

[5] H. Murakami, S. Fujiwara, I. Kawayama, M. Tonouchi. Study of photoexcited-carrier dynamics in photoconductive switches using dynamic terahertz emission microscopy. Photon. Res., 2016, 4: A9-A15.

[6] K. Serita, E. Matsuda, K. Okada, H. Murakami, I. Kawayama, M. Tonouchi. Terahertz microfluidic chips sensitivity-enhanced with a few arrays of meta-atoms. APL Photon., 2018, 3: 051603.

[7] H. Murakami, K. Serita, Y. Maekawa, S. Fujiwara, E. Matsuda, S. Kim, I. Kawayama, M. Tonouchi. Scanning laser THz imaging system. J. Phys. D, 2014, 47: 374007.

[8] M. Tani, K.-S. Lee, X.-C. Zhang. Detection of terahertz radiation with low-temperature-grown GaAs based photoconductive antenna using 1.55  μm probe. Appl. Phys. Lett., 2000, 77: 1396-1398.

[9] C. Zhang, L. Chai, Y. Song, M. Hu, C. Wang. Ultra-broadband optical spectrum generation from a stretched pulse fiber laser utilizing zero-dispersion fiber. Chin. Opt. Lett., 2013, 11: 051403.

[10] X.-C. Zhang, D. H. Auston. Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics. J. Appl. Phys., 1992, 71: 326-338.

[11] R. Kersting, K. Unterrainer, G. Strasser, H. F. Kauffmann, E. Gornik. Few-cycle THz emission from cold plasma oscillations. Phys. Rev. Lett., 1997, 79: 3038-3041.

[12] R. Huber, A. Brodschelm, F. Tauser, A. Leitenstorfer. Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41  THz. Appl. Phys. Lett., 2000, 76: 3191-3193.

[13] M. Tonouchi. Simplified formulas for the generation of terahertz waves from semiconductor surfaces excited with a femtosecond laser. J. Appl. Phys., 2020, 127.

[14] H. Dember. Über eine photoelektronische Kraft in Kupferoxydul-Kristallen. Z. Phys., 1931, 32: 554-556.

[15] J. Hebling, G. Almási, I. Z. Kozma, J. Kuhl. Velocity matching by pulse front tilting for large-area THz-pulse generation. Opt. Express, 2002, 10: 1161-1166.

[16] M. Kaminska, Z. L. Weber, E. R. Weber, T. George. Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures. Appl. Phys. Lett., 1989, 54: 1881-1883.

[17] S. Gupta, J. F. Whitaker, G. A. Mourou. Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures. IEEE J. Quantum Electron., 1992, 28: 2464-2472.

[18] D. C. Look. Molecular beam epitaxial GaAs grown at low temperatures. Thin Solid Films, 1993, 231: 61-73.

[19] M. C. Beard, G. M. Turner, C. A. Schmuttenmaer. Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy. J. Appl. Phys., 2001, 90: 5915-5923.

[20] P. Pohl, F. H. Renner, M. Eckardt, A. Schwanhäußer, A. Friedrich, Ö. Yüksekdag, S. Malzer, G. H. Döhler. Enhanced recombination tunneling in GaAs pn junctions containing low-temperature-grown-GaAs and ErAs layers. Appl. Phys. Lett., 2003, 83: 4035-4037.

[21] R. S. Adhav, S. R. Adhav, J. M. Pelaprat. BBO’s nonlinear optical phase-matching properties. Laser Focus, 1987, 23: 88-100.

[22] A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, Y. Kadoya. Detection of terahertz waves using low-temperature-grow InGaAs with 1.56  μm pulse excitation. Appl. Phys. Lett., 2007, 90: 101119.

[23] M. Suzuki, M. Tonouchi. Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56  μm femtosecond optical pulses. Appl. Phys. Lett., 2005, 86: 163504.

[24] H. Murakami, K. Mizui, M. Tonouchi. High-sensitivity photoconductive detectors with wide dipole electrodes for low frequency THz wave detection. J. Appl. Phys., 2019, 125: 151610.

[25] A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, R. Gordon. Plasmon-enhanced below bandgap photoconductive terahertz generation and detection. Nano Lett., 2015, 15: 8306-8310.

[26] F. Fesharaki, A. Jooshesh, V. Bahrami-Yekta, M. Mahtab, T. Tiedje, T. E. Darcie, R. Gordon. Plasmonic antireflection coating for photoconductive terahertz generation. ACS Photon., 2017, 4: 1350-1354.

[27] O. Abdulmunem, K. Hassoon, M. Gaafar, A. Rahimi-Iman, J. C. Balzer. TiN nanoparticles for enhanced THz generation in TDS systems. J. Infrared Millim. Terahertz Waves, 2017, 38: 1206-1214.

[28] S.-G. Park, K. H. Jin, M. Yi, J. C. L. Ye, J. Ahn, K.-H. Jeong. Enhancement of terahertz pulse emission by optical nanoantenna. ACS Nano, 2012, 6: 2026-2031.

[29] S.-G. Park, Y. Choi, Y.-J. Oh, K.-H. Jeong. Terahertz photoconductive antenna with metal nanoislands. Opt. Express, 2012, 20: 25530-25535.

[30] S. Lepeshov, A. Gorodetsky, A. Krasnok, N. Toropov, T. A. Vartanyan, P. Belov, A. Alú, E. U. Rafailov. Boosting terahertz photoconductive antenna performance with optimised plasmonic nanostructures. Sci. Rep., 2018, 8.

[31] N. T. Yardimci, M. Jarrahi. Nanostructure-enhanced photoconductive terahertz emission and detection. Small, 2018, 14: 1802437.

[32] M. Bashirpour, M. Forouzmehr, S. E. Hosseininejad, M. Kolahdouz, M. Neshat. Improvement of terahertz photoconductive antenna using optical antenna array of ZnO nanorods. Sci. Rep., 2019, 9.

[33] T. Siday, P. P. Vabishchevich, L. Hale, C. T. Harris, T. S. Luk, J. L. Reno, I. Brener, O. Mitrofanov. Terahertz detection with perfectly-absorbing photoconductive metasurface. Nano Lett., 2019, 19: 2888-2896.

[34] N. Wang, M. R. Hashemi, M. Jarrahi. Plasmonic photoconductive detectors for enhanced terahertz detection sensitivity. Opt. Express, 2013, 21: 17221-17227.

[35] N. T. Yardimci, M. Jarrahi. High sensitivity terahertz detection through large-area plasmonic nano-antenna arrays. Sci. Rep., 2017, 7: 42667.

[36] S. Cakmakyapan, P. K. Lu, A. Navabi, M. Jarrahi. Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime. Light: Sci. Appl., 2018, 7.

[37] C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, M. Jarrahi. Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes. Nat. Commun., 2013, 4.

[38] K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B, 2003, 107: 668-677.

[39] N. T. Yardimci, H. Lu, M. Jarrahi. High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays. Appl. Phys. Lett., 2016, 109: 191103.

[40] Y. Tian, T. Tatsuma. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc., 2005, 127: 7632-7637.

[41] S. Link, M. A. El-Sayed. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B, 1999, 103: 8410-8426.

[42] I. Romero, J. Aizpurua, G. W. Bryant, F. J. García de Abajo. Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt. Express, 2006, 14: 9988-9999.

[43] E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, C. A. Mirkin. Multipole plasmon resonances in gold nanorods. J. Phys. Chem. B, 2006, 110: 2150-2154.

[44] R. Gans. Über die form ultramikroskopischer goldteilchen. Ann. Phys., 1912, 342: 881-900.

[45] R. Gans. Über die Form ultramikroskopischer Silberteilchen. Ann. Phys., 1915, 352: 270-284.

[46] G. Mie. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys., 1908, 330: 377-445.

[47] C. A. Foss, G. L. Hornyak, M. J. Tierney, C. R. Martin. Template synthesis of infrared-transparent metal microcylinders: comparison of optical properties with the predictions of effective medium theory. J. Phys. Chem., 1992, 96: 9001-9007.

[48] G. L. Hornyak, C. J. Patrissi, C. R. Martin. Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites: the nonscattering Maxwell-Garnett limit. J. Phys. Chem. B, 1997, 101: 1548-1555.

[49] S. Link, M. B. Mohamed, M. A. El-Sayed. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B, 1999, 103: 3073-3077.

[50] R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, M. B. Raschke. Optical dielectric function of gold. Phys. Rev. B, 2012, 86: 235147.

[51] G. A. Samara. Temperature and pressure dependence of the dielectric constants of semiconductors. Phys. Rev. B, 1983, 27: 3494-3505.

Hironaru Murakami, Tomoya Takarada, Masayoshi Tonouchi. Low-temperature GaAs-based plasmonic photoconductive terahertz detector with Au nano-islands[J]. Photonics Research, 2020, 8(9): 09001448.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!