中国激光, 2014, 41 (7): 0703010, 网络出版: 2014-04-23   

激光原位制备高体积分数与长径比的TiB短纤维与TiB2P增强钛基复合涂层

High Volume Fraction and Length-Diameter Ratio of TiB Short Fiber and TiB2P Reinforce Ti-Based Alloy Composite Coatings by Laser Synthesis In-Situ
作者单位
北京工业大学材料科学与工程学院, 北京 100124
引用该论文

林英华, 雷永平. 激光原位制备高体积分数与长径比的TiB短纤维与TiB2P增强钛基复合涂层[J]. 中国激光, 2014, 41(7): 0703010.

Lin Yinghua, Lei Yongping. High Volume Fraction and Length-Diameter Ratio of TiB Short Fiber and TiB2P Reinforce Ti-Based Alloy Composite Coatings by Laser Synthesis In-Situ[J]. Chinese Journal of Lasers, 2014, 41(7): 0703010.

参考文献

[1] B Sarma, K S Ravi Chandran. Accelerated kinetics of surface hardening by diffusion near phase transition temperature: mechanism of growth of boride layers on titanium[J]. Acta Materialia, 2011, 59(10): 4216-4228.

[2] Xianglong Guo, Liqiang Wang, Minmin Wang, et al.. Effects of degree of deformation on the microstructure, mechanical properties and texture of hybrid-reinforced titanium matrix composites[J]. Acta Materialia, 2012, 60(6): 2656-2667.

[3] 张维平, 马海波, 陈天运, 等. 激光熔覆原位生成硬质陶瓷颗粒钴基复合涂层[J]. 中国激光, 2009, 36(12): 3277-3281.

    Zhang Weiping, Ma Haibo, Chen Tianyun, et al.. In-situ synthesis of ceramic particle reinforced co-based alloy composite coating by laser cladding[J]. Chinese J Lasers, 2009, 36(12): 3277-3281.

[4] Feng Shurong, Tang Haibo, Zhang Shuquan, et al.. Microstructure and wear resistance of laser clad TiB-TiC/TiNi-Ti2Ni intermetallic coating on titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(7): 1667-1673.

[5] Abachi P, Masoudi A, Purazrang K. Dry sliding wear behavior of SiCp/QE22 magnesium alloy matrix composites[J]. Materials Science and Engineering, 2006, 435-436(5): 653-657.

[6] Alahelisten A, Bergman F, Olsson M, et al.. On the wear of aluminium and magnesium metal matrix composite[J]. Wear, 1993, 165(2): 221-226.

[7] Jyotsna Dutta Majumdar, Lin Li. Development of titanium boride (TiB) dispersed titanium (Ti) matrix composite by direct laser cladding[J]. Materials Letters, 2010, 64(9): 1010-1012.

[8] M Li, J Huang, Y Y Zhu, et al.. Effect of heat input on the microstructure of in-situ synthesized TiN- TiB/Ti based composite coating by laser cladding[J]. Surface & Coatings Technology, 2012, 206(19): 4021-4026.

[9] Jun Li, Zhishui Yu, Huiping Wang. Wear behaviors of an (TiB+TiC)/Ti composite coating fabricated on Ti6Al4V by laser cladding[J]. Thin Solid Films, 2011, 519(15): 4804-4808.

[10] 梁京, 高明媛, 刘常升, 等. 激光诱导原位反应制备钛基复合涂层的工艺研究[J]. 中国激光, 2009, 36(12): 3272-3276.

    Liang Jing, Gao Mingyuan, Liu Changsheng, et al.. Laser induced in-situ formation of titanium composite coatings[J]. Chinese J Lasers, 2009, 36(12): 3272-3276.

[11] Mitun Das, Vamsi Krishna Balla, Debabrata Basu, et al.. Laser processing of in situ synthesized TiB-TiN-reinforced Ti6Al4V alloy coatings[J]. Scripta Materialia, 2012, 66(8): 578-581.

[12] 冯淑容, 张述泉, 王华明. 钛合金激光熔覆硬质颗粒增强金属间化合物复合涂层耐磨性[J]. 中国激光, 2012, 39(2): 0203002.

    Feng Shurong, Zhang Shuquan, Wang Huaming. Wear resistance of laser clad particles reinforced intermetallic composite coating on TA15 alloy[J]. Chinese J Lasers, 2012, 39(2): 0203002.

[13] S Gorsse, D B Miracle. Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcements[J]. Acta Materialia, 2003, 51(9): 2427-2442.

[14] Indrani Sen, K Gopinath, Ranjan Datta, et al.. Fatigue in Ti-6Al-4V-B alloys[J]. Acta Materialia, 2010, 58(20): 6799-6809.

[15] 马晓燕, 梁国正, 贾巧英. 晶须在复合材料中的应用[J]. 材料导报, 2001, 7(15): 44-46.

    Ma Xiaoyan, Liang Guozheng, Jia Qiaoying. Applications of whiskers in composites[J]. Materials Review, 2001, 7(15): 44-46.

[16] Weijie Lu, Di Zhang, Xiaonong Zhang, et al.. Microstructural characterization of TiB in in situ synthesized titanium matrix composites prepared by common casting technique[J]. Journal of Alloys and Compounds, 2001, 327(1): 240-247.

[17] 林英华, 陈志勇, 李月华, 等. TC4钛合金表面激光原位制备TiB陶瓷涂层的微观组织特征与硬度特性[J]. 红外与激光工程, 2012, 41(10): 2694-2698.

    Lin Yinghua, Chen Zhiyong, Li Yuehua, et al.. Microstructure and hardness characteristic of in-situ synthesized TiB coating by laser cladding on TC4 titanium alloy[J]. Infrared and Laser Enginering, 2012, 41(10): 2694-2698.

[18] Anstis G R, Chantikul P, Lawn B R, et al.. A critical evaluation of indentation technique for measuring fracture toughness: Ⅰ. direct crack measurement[J]. Journal of the American Ceramic Society, 1981, 64(9): 533-538.

[19] 李武. 无机晶须[M]. 北京: 化学工业出版社, 2005. 1-3.

    Li Wu. Inorganic Whiskers[M]. Beijing: Chemical Industry Press, 2005. 1-3.

[20] S Gorsse, D B Miracle. Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcements[J]. Acta Materialia, 2003, 51(9): 2427-2442.

[21] Zhang X N, Lu W J, Zhang D, et al.。 In situ technique for synthesizing (TiB+TiC)/Ti composites[J]. Scripta Materialia, 1999, 44(1): 39-46.

林英华, 雷永平. 激光原位制备高体积分数与长径比的TiB短纤维与TiB2P增强钛基复合涂层[J]. 中国激光, 2014, 41(7): 0703010. Lin Yinghua, Lei Yongping. High Volume Fraction and Length-Diameter Ratio of TiB Short Fiber and TiB2P Reinforce Ti-Based Alloy Composite Coatings by Laser Synthesis In-Situ[J]. Chinese Journal of Lasers, 2014, 41(7): 0703010.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!