Photonics Research, 2019, 7 (3): 03000332, Published Online: Mar. 7, 2019   

Tunable and switchable harmonic h-shaped pulse generation in a 3.03  km ultralong mode-locked thulium-doped fiber laser

Author Affiliations
1 Jiangsu Key Laboratory of Advanced Laser Materials and Devices, Jiangsu Collaborative Innovation Center of Advanced Laser Technology and Emerging Industry, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
2 School of Engineering and Materials Science, Queen Mary University of London, London, UK
Copy Citation Text

Junqing Zhao, Lei Li, Luming Zhao, Dingyuan Tang, Deyuan Shen, Lei Su. Tunable and switchable harmonic h-shaped pulse generation in a 3.03  km ultralong mode-locked thulium-doped fiber laser[J]. Photonics Research, 2019, 7(3): 03000332.

References

[1] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 2009, 19: 3077-3083.

[2] H. Zhang, Q. Bao, D. Tang, L. Zhao, K. Loh. Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. Appl. Phys. Lett., 2009, 95: 141103.

[3] H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt. Express, 2009, 17: 17630-17635.

[4] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4: 803-810.

[5] Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, A. C. Ferrari. A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser. Nano Res., 2010, 3: 653-660.

[6] C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, D. Tang. Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker. Opt. Express, 2012, 20: 27888-27895.

[7] Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, S. Wen. The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber. Laser Phys. Lett., 2014, 11: 055101.

[8] P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, S. Ruan. Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser. IEEE Photon. Technol. Lett., 2015, 27: 264-267.

[9] Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, D. Fan. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Opt. Express, 2015, 23: 12823-12833.

[10] Z. Luo, M. Liu, Z. Guo, X. Jiang, A. Luo, C. Zhao, X. Yu, W. Xu, H. Zhang. Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser. Opt. Express, 2015, 23: 20030-20039.

[11] Y. Song, S. Chen, Q. Zhang, L. Li, L. Zhao, H. Zhang, D. Tang. Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber. Opt. Express, 2016, 24: 25933-25942.

[12] Z. Wang, Y. Xu, S. C. Dhanabalan, J. Sophia, C. Zhao, C. Xu, Y. Xiang, J. Li, H. Zhang. Black phosphorus quantum dots as an efficient saturable absorber for bound soliton operation in an erbium doped fiber laser. IEEE Photon. J., 2016, 8: 1503310.

[13] X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, H. Zhang. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photon. Rev., 2018, 12: 1700229.

[14] S. Chouli, P. Grelu. Rains of solitons in a fiber laser. Opt. Express, 2009, 17: 11776-11781.

[15] X. Liu, X. Yao, Y. Cui. Real-time observation of the buildup of soliton molecules. Phys. Rev. Lett., 2018, 121: 023905.

[16] H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu. Dark pulse emission of a fiber laser. Phys. Rev. A, 2009, 80: 045803.

[17] W. Chang, A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev. Dissipative soliton resonances. Phys. Rev. A, 2008, 78: 023830.

[18] X. Wu, D. Y. Tang, H. Zhang, L. M. Zhao. Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser. Opt. Express, 2009, 17: 5580-5584.

[19] C. Mou, R. Arif, A. Rozhin, S. Turitsyn. Passively harmonic mode locked erbium doped fiber soliton laser with carbon nanotubes based saturable absorber. Opt. Mater. Express, 2012, 2: 884-890.

[20] J. Du, S. M. Zhang, H. F. Li, Y. C. Meng, X. L. Li, Y. P. Hao. L-band passively harmonic mode-locked fiber laser based on a graphene saturable absorber. Laser Phys. Lett., 2012, 9: 896-900.

[21] Z. Luo, M. Liu, H. Liu, X. Zheng, A. Luo, C. Zhao, H. Zhang, S. Wen, W. Xu. 2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber. Opt. Lett., 2013, 38: 5212-5215.

[22] M. Liu, A. Luo, W. Xu, Z. Luo. Coexistence of bound soliton and harmonic mode-locking soliton in an ultrafast fiber laser based on MoS2-deposited microfiber photonic device. Chin. Opt. Lett., 2018, 16: 020008.

[23] Y. Wang, D. Mao, X. Gan, L. Han, C. Ma, T. Xi, Y. Zhang, W. Shang, S. Hua, J. Zhao. Harmonic mode locking of bound-state solitons fiber laser based on MoS2 saturable absorber. Opt. Express, 2015, 23: 205-210.

[24] B. Zhao, D. Y. Tang, P. Shum, W. S. Man, H. Y. Tam, Y. D. Gong, C. Lu. Passive harmonic mode locking of twin-pulse solitons in an erbium-doped fiber ring laser. Opt. Commun., 2004, 229: 363-370.

[25] L. M. Zhao, D. Y. Tang, T. H. Cheng, C. Lu, H. Y. Tam, X. Q. Fu, S. C. Wen. Passive harmonic mode locking of soliton bunches in a fiber ring laser. Opt. Quantum Electron., 2008, 40: 1053-1064.

[26] L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, C. Lu. Passive harmonic mode locking of gain-guided solitons in erbium-doped fiber lasers. Chin. Sci. Bull., 2008, 53: 676-680.

[27] J. Peng, L. Zhan, S. Luo, Q. Shen. Passive harmonic mode-locking of dissipative solitons in a normal-dispersion Er-doped fiber laser. J. Lightwave Technol., 2013, 31: 2709-2714.

[28] Y. Lyu, H. Shi, C. Wei, H. Li, J. Li, Y. Liu. Harmonic dissipative soliton resonance pulses in a fiber ring laser at different values of anomalous dispersion. Photon. Res., 2017, 5: 612-616.

[29] G. Semaan, A. Niang, M. Salhi, F. Sanchez. Harmonic dissipative soliton resonance square pulses in an anomalous dispersion passively mode-locked fiber ring laser. Laser Phys. Lett., 2017, 14: 055401.

[30] X. Li, S. Zhang, Y. Meng, Y. Hao. Harmonic mode locking counterparts of dark pulse and dark-bright pulse pairs. Opt. Express, 2013, 21: 8409-8416.

[31] J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, G. L. Zhang, H. Q. Li, Y. H. Tsang. An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses. Laser Phys., 2013, 23: 075105.

[32] R. Lin, Y. Wang, P. Yan, G. Zhang, J. Zhao, H. Li, S. Huang, G. Cao, J. Duan. Bright and dark square pulses generated from a graphene-oxide mode-locked ytterbium-doped fiber laser. IEEE Photon. J., 2014, 6: 1500908.

[33] G. Semaan, F. B. Braham, J. Fourmont, M. Salhi, F. Bahloul, F. Sanchez. 10 μJ dissipative soliton resonance square pulse in a dual amplifier figure-of-eight double-clad Er:Yb mode-locked fiber laser. Opt. Lett., 2016, 41: 4767-4770.

[34] J. Zhao, D. Ouyang, Z. Zheng, M. Liu, X. Ren, C. Li, S. Ruan, W. Xie. 100 W dissipative soliton resonances from a thulium-doped double-clad all-fiber-format MOPA system. Opt. Express, 2016, 24: 12072-12081.

[35] C. Shang, X. Li, Z. Yang, S. Zhang, M. Han, J. Liu. Harmonic dissipative soliton resonance in an Yb-doped fiber laser. J. Lightwave Technol., 2018, 36: 4932-4935.

[36] A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, F. Sanchez. Competition and coexistence of ultrashort pulses in passive mode-locked lasers under dissipative-soliton-resonance conditions. Phys. Rev. A, 2013, 87: 023838.

[37] J. Liu, Y. Chen, P. Tang, C. Xu, C. Zhao, H. Zhang, S. Wen. Generation and evolution of mode-locked noise-like square-wave pulses in a large-anomalous-dispersion Er-doped ring fiber laser. Opt. Express, 2015, 23: 6418-6427.

[38] J. Zhao, L. Li, L. Zhao, D. Tang, D. Shen. Dissipative soliton resonances in a mode-locked holmium-doped fiber laser. IEEE Photon. Technol. Lett., 2018, 30: 1699-1702.

[39] L. Zhao, D. Li, L. Li, X. Wang, Y. Geng, D. Shen, L. Su. Route to larger pulse energy in ultrafast fiber lasers. IEEE J. Sel. Top. Quantum Electron., 2018, 24: 8800409.

[40] P. K. Gupta, C. P. Singh, A. Singh, S. K. Sharma, P. K. Mukhopadhyay, K. S. Bindra. Chair-like pulses in an all-normal dispersion ytterbium-doped mode-locked fiber laser. Appl. Opt., 2016, 55: 9961-9967.

[41] D. Mao, X. Liu, L. Wang, H. Lu, L. Duan. Dual-wavelength step-like pulses in an ultra-large negative-dispersion fiber laser. Opt. Express, 2011, 19: 3996-4001.

[42] J. Zhao, L. Li, L. Zhao, D. Tang, D. Shen. Cavity-birefringence-dependent h-shaped pulse generation in a thulium-holmium-doped fiber laser. Opt. Lett., 2018, 43: 247-250.

[43] H. Luo, F. Liu, J. Li, Y. Liu. High repetition rate gain-switched Ho-doped fiber laser at 2.103 μm pumped by h-shaped mode-locked Tm-doped fiber laser at 1.985 μm. Opt. Express, 2018, 26: 26485-26494.

[44] F. Haxsen, D. Wandt, U. Morgner, J. Neumann, D. Kracht. Monotonically chirped pulse evolution in an ultrashort pulse thulium-doped fiber laser. Opt. Lett., 2012, 37: 1014-1016.

[45] M. S. Kang, N. Y. Joly, P. St.J. Russell. Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances. Opt. Lett., 2013, 38: 561-563.

[46] Q. Kuang, L. Zhan, Z. Wang, M. Huang. Up to the 1552nd order passively harmonic mode-locked Raman fiber laser. IEEE Photon. Technol. Lett., 2015, 27: 2205-2208.

[47] AgrawalG. P., Nonlinear Fiber Optics, 5th ed. (Elsevier, 2013).

[48] N. J. Doran, D. Wood. Nonlinear-optical loop mirror. Opt. Lett., 1988, 13: 56-58.

Junqing Zhao, Lei Li, Luming Zhao, Dingyuan Tang, Deyuan Shen, Lei Su. Tunable and switchable harmonic h-shaped pulse generation in a 3.03  km ultralong mode-locked thulium-doped fiber laser[J]. Photonics Research, 2019, 7(3): 03000332.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!