光学学报, 2024, 44 (6): 0606001, 网络出版: 2024-03-19  

同信道干扰下RIS辅助FSO-RF混构系统性能分析

Performance Analysis of RIS-Assisted FSO-RF Hybrid Systems Under Co-Channel Interference
作者单位
重庆理工大学电气与电子工程学院,重庆 400054
摘要
针对自由空间光(FSO)通信无法进行视距传输的问题,在FSO链路中引入可重构智能表面(RIS)技术,并考虑射频(RF)链路中的同信道干扰(CCI)信号,提出一种CCI下RIS辅助FSO-RF混构系统研究方案。其中FSO链路和RF链路分别服从Gamma-Gamma分布和Rayleigh分布,在光电转换中继节点处采用译码转发协议,以减少噪声对信号的干扰。基于系统端到端瞬时信噪比的概率密度函数,推导了系统中断概率和平均误码率的闭合表达式,采用蒙特卡罗仿真验证了结果的准确性。研究结果表明,相较于传统的混合FSO/RF系统,RIS能明显提升系统的性能。另外,根据系统的分集顺序,得出系统的性能主要与FSO链路的衰落参数、光检测方式和指向误差有关。
Abstract
Objective

The problems of spectrum limitations and co-channel interference (CCI) in radio frequency (RF) communication systems have limited the development of high-speed rate services. At the same time, free-space optical (FSO) communication is complementary to RF communication because it does not require a spectrum license and is highly resistant to interference. However, FSO communication is susceptible to atmospheric turbulence and pointing errors, which can deteriorate the communication link and even cause disruptions. In order to improve the performance of FSO systems, traditional solutions use spatial diversity, aperture averaging, and FSO-RF hybrid systems. Based on the FSO-RF hybrid system, we introduce reconfigurable intelligent surface technology in the FSO link to solve the problem of FSO being unable to carry out line-of-sight communication. Considering the CCI problem in the RF link, we propose a reconfigurable intelligent surface (RIS)-assisted FSO-RF hybrid system scheme under CCI, which further improves the performance of the system compared with the traditional FSO/RF scheme.

Methods

We present a scheme for a hybrid FSO-RF system under CCI. Firstly, reconfigurable smart surface techniques are introduced in the FSO link for the case where line-of-sight transmission is not possible for FSO communication, and CCI signals in the RF link are considered. The FSO link obeys the Gamma-Gamma distribution, and the RF link obeys the Rayleigh distribution. In addition, a decode-and-forward protocol is used at the optoelectronic switching relay node. Then, based on the probability density function of the system end-to-end instantaneous signal-to-noise ratio (SNR), closed-form expressions for the system outage probability and average bit error rate (BER) are derived, and Monte Carlo simulation is used to verify the accuracy of the results. Finally, the corresponding conclusions are drawn based on the diversity order of the system.

Results and Discussions

With a fixed average SNR of the FSO link, the outage probability performance of the system deteriorates as the H and CCI SNR increase, i.e. when the number of interfering signals at the destination node and the corresponding SNR increase. Moreover, under the same parameter conditions, the RIS-assisted system can achieve an outage probability of 10-4, while the conventional hybrid system can only achieve an outage probability of 10-2, indicating that the performance of the RIS-assisted two-hop hybrid FSO-RF system under CCI is much better than that of the traditional FSO/RF system (Fig. 2). The performance of the proposed FSO-RF hybrid system is better than that of the traditional FSO/RF hybrid system under the same parameters with fixed average SNR of the RF link and for different pointing error coefficients on the outage probability of the system. For the RIS-assisted hybrid system, when the pointing error coefficient is reduced from 1.23 to 0.73, the outage probability of the system increases significantly, indicating that the pointing error coefficient is the dominant factor affecting the outage probability of the system (Fig. 3). The effect of five modulation methods on the average BER of the system is analyzed for a fixed FSO link average SNR. The two modulation methods, differential binary phase shift keying (DBPSK) and noncoherent binary frequency shift keying (NBFSK), are close in effect, but DBPSK performs better. The RIS-assisted hybrid system can significantly reduce the average BER compared with the traditional FSO/RF system with the same modulation, i.e. both using BPSK. The results are consistent with the simulation results, indicating the accuracy of the obtained formulae (Fig. 5). The effect of the five modulation methods on the average BER of the system is analyzed for a fixed RF link average SNR, with low BER. DBPSK>NBFSK>OOK>BFSK>BPSK when γˉSR is less than 30 dB. NBFSK>DBPSK>OOK>BFSK>BPSK when γˉSR is higher than 30 dB. In comparison with the traditional FSO/RF system, the two BERs can largely coincide under high SNR conditions considering the effect of strong pointing errors, but for low SNR conditions, the performance of the RIS-assisted hybrid system is significantly improved (Fig. 6).

Conclusions

In this paper, the performance of RIS-assisted FSO-RF hybrid systems under CCI is investigated. The FSO link under RIS assistance obeys the Gamma-Gamma distribution, and the RF link in the presence of CCI obeys the Rayleigh distribution. The decode-and-forward protocol is used at the relay node, and closed-form expressions for the system outage probability and the average BER are derived. In addition, to obtain more significant conclusions, an asymptotic analysis of the outage probability is also provided in this paper, and Monte Carlo simulations are performed to analyze them numerically. The simulation results show that HD detection outperforms IM/DD detection among the different light detection methods and that this detection method is effective in combating the effects of atmospheric turbulence on the system. Compared with the traditional FSO/RF system, the performance of the proposed system solution in this paper is greatly improved with the assistance of RIS, even in the presence of CCI.

曹阳, 包朝园, 彭小峰, 邢雯珺. 同信道干扰下RIS辅助FSO-RF混构系统性能分析[J]. 光学学报, 2024, 44(6): 0606001. Yang Cao, Chaoyuan Bao, Xiaofeng Peng, Wenjun Xing. Performance Analysis of RIS-Assisted FSO-RF Hybrid Systems Under Co-Channel Interference[J]. Acta Optica Sinica, 2024, 44(6): 0606001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!