激光与光电子学进展, 2018, 55 (12): 121402, 网络出版: 2019-08-01   

超短激光脉冲作用下等离激元“相变”特性研究 下载: 1113次

Phase Transition of Plasmons Induced by Ultrashort Laser Pulses
作者单位
北京工业大学应用数理学院, 北京 100124
引用该论文

刘鹤元, 黄翠莺, 黄梅婷, 张新平. 超短激光脉冲作用下等离激元“相变”特性研究[J]. 激光与光电子学进展, 2018, 55(12): 121402.

Heyuan Liu, Cuiying Huang, Meiting Huang, Xinping Zhang. Phase Transition of Plasmons Induced by Ultrashort Laser Pulses[J]. Laser & Optoelectronics Progress, 2018, 55(12): 121402.

参考文献

[1] Paul P M, Toma E S, Breger P, et al. Observation of a train of attosecond pulses from high harmonic generation[J]. Science, 2001, 292(5522): 1689-1692.

[2] Albert O, Roger S, Glinec Y, et al. Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers[J]. Applied Physics A, 2003, 76(3): 319-323.

[3] 付杰, 郭喜庆, 赵天卓, 等. 激光诱导钢靶等离子体时间分辨光谱特性研究[J]. 中国激光, 2017, 44(3): 0311001.

    Fu J, Guo X Q, Zhao T Z, et al. Spectral time evolution behavior of laser induced steel target plasma[J]. Chinese Journal of Lasers, 2017, 44(3): 0311001.

[4] Rayner D M, Naumov A, Corkum P B. Ultrashort pulse non-linear optical absorption in transparent media[J]. Optics Express, 2005, 13(9): 3208-3217.

[5] Ahmmed K, Grambow C, Kietzig A M. Fabrication of micro/nano structures on metals by femtosecond laser micromachining[J]. Micromachines, 2014, 5(4): 1219-1253.

[6] KorteF, EgbertA, NolteS, et al. Nanostructuring with femtosecond laser pulses[C]//Proceedings of Conference on Lasers and Electro-Optics, May 7-11, 2000, San Francisco, California, USA, New York: IEEE, 2000: 37.

[7] 井晨睿, 王朝晖, 程亚. 基于飞秒激光时空聚焦技术的三维微纳加工[J]. 激光与光电子学进展, 2017, 54(4): 040005.

    Jing C R, Wang Z H, Cheng Y. Three-dimensional micro- and nano-machining based on spatiotemporal focusing technique of femtosecond laser[J]. Laser & Optoelectronics Progress, 2017, 54(4): 040005.

[8] 杨奇彪, 刘少军, 汪于涛, 等. 纳秒激光诱导铝板表面超疏水微纳结构[J]. 激光与光电子学进展, 2017, 54(9): 091406.

    Yang Q B, Liu S J, Wang Y T, et al. Super-hydrophobic micro-nano structures on aluminum surface induced by nanosecond laser[J]. Laser & Optoelectronics Progress, 2017, 54(9): 091406.

[9] Zhang B B, Khurgin J B. Eigen mode approach to the sub-wavelength imaging with surface plasmon polaritons[J]. Applied Physics Letters, 2011, 98(26): 263102.

[10] Scarano S, Mascini M. Turner A P F, et al. Surface plasmon resonance imaging for affinity-based biosensors[J]. Biosensors and Bioelectronics, 2010, 25(5): 957-966.

[11] Ermini M L, Mariani S, Scarano S, et al. Bioanalytical approaches for the detection of single nucleotide polymorphisms by surface plasmon resonance biosensors[J]. Biosensors and Bioelectronics, 2014, 61: 28-37.

[12] Parvathy Devi B, Wu K C, Pei Z. Gold nanomesh induced surface plasmon for photocurrent enhancement in a polymer solar cell[J]. Solar Energy Materials and Solar Cells, 2011, 95(8): 2102-2106.

[13] Pillai S, Disney C E, Yang Y, et al. The effect of ageing on the scattering properties of silver nanoparticles for a plasmonic solar cell[J]. Journal of Applied Physics, 2015, 118(15): 153102.

[14] Mendonça JT, BinghamR, Shukla PK. Quasi-particle view of plasma turbulence[J]. Physica Scripta, 2004( T113): 13- 14.

[15] 陈晓宇, 王经东, 于安池. 金纳米颗粒在不同包裹介质中的超快等离子体动力学[J]. 物理化学学报, 2017, 33(11): 2184-2190.

    Chen X Y, Wang J D, Yu A C. Effect of surrounding media on ultrafast plasmon dynamics of gold nanoparticles[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2184-2190.

[16] Park S, Pelton M, Liu M Z, et al. Ultrafast resonant dynamics of surface plasmons in gold nanorods[J]. Journal of Physical Chemistry C, 2007, 111(1): 116-123.

[17] Harutyunyan H. Martinson A B F, Rosenmann D, et al. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots[J]. Nature Nanotechnology, 2015, 10(9): 770-774.

[18] Takami A, Kurita H, Koda S. Laser-induced size reduction of noble metal particles[J]. Journal of Physical Chemistry B, 1999, 103(8): 1226-1232.

[19] 闫焱, 李凌. 飞秒激光照射金箔的分子动力学模拟[J]. 光学学报, 2016, 36(8): 0814001.

    Yan Y, Li L. Molecular dynamics simulation of femtosecond laser irradiating gold foils[J]. Acta Optica Sinica, 2016, 36(8): 0814001.

[20] Link S, Burda C, Nikoobakht B, et al. Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses[J]. Journal of Physical Chemistry B, 2000, 104(26): 6152-6163.

[21] Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles[J]. Langmuir, 1996, 12(3): 788-800.

[22] Everhart T E, Hayes T L. The scanning electron microscope[J]. Scientific American, 1972, 226(1): 54-69.

[23] Kim K S, Choi S, Cha J H, et al. Facile one-pot synthesis of gold nanoparticles using alcohol ionic liquids[J]. Journal of Materials Chemistry, 2006, 16: 1315-1317.

[24] Leu C, Chen S, Liu F. Spin-coating-derived gold-nanoparticle memory[J]. Journal of the American Ceramic Society, 2010, 93(10): 3142-3147.

[25] 童廉明, 徐红星. 表面等离激元——机理、应用与展望[J]. 物理, 2012, 41(9): 582-588.

    Tong L M, Xu H X. Surface plasmons: mechanisms, applications and perspectives[J]. Physics, 2012, 41(9): 582-588.

[26] 王振林. 表面等离激元研究新进展[J]. 物理学进展, 2009, 29(3): 287-324.

    Wang Z L. New development of surface plasmons[J]. Advances in Physics, 2009, 29(3): 287-324.

[27] Jensen T, Kelly L, Lazarides A, et al. Electrodynamics of noble metal nanoparticles and nanoparticle clusters[J]. Journal of Cluster Science, 1999, 10(2): 295-317.

[28] 马守宝, 刘琼, 钱晓晨, 等. 铝纳米颗粒表面等离子体共振峰可控性研究[J]. 光学学报, 2017, 37(9): 0931001.

    Ma S B, Liu Q, Qian X C, et al. Controllability study of surface plasmon resonance spectra of aluminium nanoparticles[J]. Acta Optica Sinica, 2017, 37(9): 0931001.

[29] Duan H G. Fernández-Domínguez A I, Bosman M, et al. Nanoplasmonics: classical down to the nanometer scale[J]. Nano Letters, 2012, 12(3): 1683-1689.

[30] Zhang X P, Liu H M, Feng S F. Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures[J]. Nanotechnology, 2009, 20(42): 425303.

刘鹤元, 黄翠莺, 黄梅婷, 张新平. 超短激光脉冲作用下等离激元“相变”特性研究[J]. 激光与光电子学进展, 2018, 55(12): 121402. Heyuan Liu, Cuiying Huang, Meiting Huang, Xinping Zhang. Phase Transition of Plasmons Induced by Ultrashort Laser Pulses[J]. Laser & Optoelectronics Progress, 2018, 55(12): 121402.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!