中国激光, 2021, 48 (8): 0802025, 网络出版: 2021-03-31   

激光熔融SiO2基底上银纳米颗粒分子动力学仿真 下载: 1283次

Molecular Dynamics Simulation of Laser Melting of Sliver Nanoparticles on SiO2 Substrate
侯超剑 2,*王根旺 1,3王扬 1,3张宏志 1,3杨立军 1,3,**
作者单位
1 哈尔滨工业大学微系统与微结构制造教育部重点实验室, 黑龙江 哈尔滨 150001
2 香港城市大学生物医疗工程系, 香港 999077
3 哈尔滨工业大学机电工程学院, 黑龙江 哈尔滨 150001
引用该论文

侯超剑, 王根旺, 王扬, 张宏志, 杨立军. 激光熔融SiO2基底上银纳米颗粒分子动力学仿真[J]. 中国激光, 2021, 48(8): 0802025.

Chaojian Hou, Genwang Wang, Yang Wang, Hongzhi Zhang, Lijun Yang. Molecular Dynamics Simulation of Laser Melting of Sliver Nanoparticles on SiO2 Substrate[J]. Chinese Journal of Lasers, 2021, 48(8): 0802025.

参考文献

[1] Zhang S L, Nguyen N, Leonhardt B, et al. Carbon-nanotube-based electrical conductors: fabrication, optimization, and applications[J]. Advanced Electronic Materials, 2019, 5(6): 1800811.

[2] Hills G, Lau C, Wright A, et al. Modern microprocessor built from complementary carbon nanotube transistors[J]. Nature, 2019, 572(7771): 595-602.

[3] Wang G W, Hou C J, Long H T, et al. Electronic and optoelectronic nanodevices based on two-dimensional semiconductor materials[J]. Acta Physico-Chimica Sinica, 2019, 35(12): 1319-1340.

[4] Zhao Z J, Gao M, Hwang S, et al. Heterogeneous nanostructures fabricated via binding energy-controlled nanowelding[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 7261-7271.

[5] Liang X W, Zhao T, Zhu P L, et al. Room-temperature nanowelding of a silver nanowire network triggered by hydrogen chloride vapor for flexible transparent conductive films[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 40857-40867.

[6] Dai S W, Li Q, Liu G P, et al. Laser-induced single point nanowelding of silver nanowires[J]. Applied Physics Letters, 2016, 108(12): 121103.

[7] Lee S J, Lee Y B, Lim Y R, et al. High energy electron beam stimulated nanowelding of silver nanowire networks encapsulated with graphene for flexible and transparent electrodes[J]. Scientific Reports, 2019, 9(1): 9376.

[8] Li Q, Liu G P, Yang H B, et al. Optically controlled local nanosoldering of metal nanowires[J]. Applied Physics Letters, 2016, 108(19): 193101.

[9] Peng Y, Cullis T, Inkson B. Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder[J]. Nano Letters, 2009, 9(1): 91-96.

[10] 马丽心, 郑纯, 李丹婷, 等. 激光复合AFM探针捕获纳米微粒的作用力分析[J]. 激光与光电子学进展, 2015, 52(7): 070601.

    Ma L X, Zheng C, Li D T, et al. Analysis of force to capture nanoparticles by composite laser AFM probe[J]. Laser & Optoelectronics Progress, 2015, 52(7): 070601.

[11] 陈忠贇, 方淦, 曹良成, 等. 飞秒激光光镊直写银微纳结构[J]. 中国激光, 2018, 45(4): 0402006.

    Chen Z Y, Fang G, Cao L C, et al. Direct writing of silver micro-nanostructures by femtosecond laser tweezer[J]. Chinese Journal of Lasers, 2018, 45(4): 0402006.

[12] 廖嘉宁, 王欣达, 周兴汶, 等. 飞秒激光直写铜微电极研究[J]. 中国激光, 2019, 46(10): 1002013.

    Liao J N, Wang X D, Zhou X W, et al. Femtosecond laser direct writing of copper microelectrodes[J]. Chinese Journal of Lasers, 2019, 46(10): 1002013.

[13] Kim S J, Jang D J. Laser-induced nanowelding of gold nanoparticles[J]. Applied Physics Letters, 2005, 86(3): 033112.

[14] Cui J L, Yang L J, Wang Y, et al. Nanospot soldering polystyrene nanoparticles with an optical fiber probe laser irradiating a metallic AFM probe based on the near-field enhancement effect[J]. ACS Applied Materials & Interfaces, 2015, 7(4): 2294-2300.

[15] Nandy J, Yedla N, Gupta P, et al. Sintering of AlSi10Mg particles in direct metal laser sintering process: a molecular dynamics simulation study[J]. Materials Chemistry and Physics, 2019, 236: 121803.

[16] Li X, Jiang L. Size distribution control of metal nanoparticles using femtosecond laser pulse train: a molecular dynamics simulation[J]. Applied Physics A, 2012, 109(2): 367-376.

[17] Ren X Y, Li X, Wei F Q, et al. Thermal field simulation of Ag nanoparticles induced by femtosecond laser[J]. Integrated Ferroelectrics, 2020, 208(1): 128-137.

[18] Ren X Y, Li X, Wei F Q, et al. Electric field simulation of Ag nanoparticles induced by femtosecond laser in welding process[J]. Ferroelectrics, 2020, 563(1): 153-163.

[19] Pan H, Ko S H, Grigoropoulos C P. The solid-state neck growth mechanisms in low energy laser sintering of gold nanoparticles: a molecular dynamics simulation study[J]. Journal of Heat Transfer, 2008, 130(9): 092404.

[20] Yang L Q, Gan Y, Zhang Y W, et al. Molecular dynamics simulation of neck growth in laser sintering of different-sized gold nanoparticles under different heating rates[J]. Applied Physics A, 2012, 106(3): 725-735.

[21] Jiang S, Zhang Y W, Gan Y, et al. Molecular dynamics study of neck growth in laser sintering of hollow silver nanoparticles with different heating rates[J]. Journal of Physics D: Applied Physics, 2013, 46(33): 335302.

[22] Cui J L, Yang L J, Zhou L, et al. Nanoscale soldering of axially positioned single-walled carbon nanotubes: a molecular dynamics simulation study[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 2044-2050.

侯超剑, 王根旺, 王扬, 张宏志, 杨立军. 激光熔融SiO2基底上银纳米颗粒分子动力学仿真[J]. 中国激光, 2021, 48(8): 0802025. Chaojian Hou, Genwang Wang, Yang Wang, Hongzhi Zhang, Lijun Yang. Molecular Dynamics Simulation of Laser Melting of Sliver Nanoparticles on SiO2 Substrate[J]. Chinese Journal of Lasers, 2021, 48(8): 0802025.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!