激光与光电子学进展, 2018, 55 (2): 020008, 网络出版: 2018-09-10   

激光无线能量传输研究进展 下载: 1721次

Research Progress of Laser Wireless Power Transmission
作者单位
中国工程物理研究院流体物理研究所, 四川 绵阳 621900
引用该论文

李巍, 吴凌远, 王伟平. 激光无线能量传输研究进展[J]. 激光与光电子学进展, 2018, 55(2): 020008.

Wei Li, Lingyuan Wu, Weiping Wang. Research Progress of Laser Wireless Power Transmission[J]. Laser & Optoelectronics Progress, 2018, 55(2): 020008.

参考文献

[1] Glaser P E. Power from the sun: Its future[J]. Science, 1968, 162(3856): 857-861.

[2] HendriksC, GeurderN, ViebahnP, et al. Solar power from space: European strategy in the light of sustainable development[C]. ESA, 2004.

[3] Rubenchik AM, Parker JM, Beach RJ, et al. Solar power beaming: From space to earth[R].[2017-7-17]. https://e-reports-ext.llnl.gov/pdf/372187.pdf.

[4] Hyde RA, Dixit SN, Weisberg AH, et al. Eyeglass: A very large aperture diffractive space telescope[C]. SPIE, 2002, 4849: 28- 39.

[5] 高凤彬, 赵长明, 关哲, 等. 激光能量穿过大气层的传输过程[J]. 激光与光电子学进展, 2017, 54(4): 041404.

    Gao F B, Zhao C M, Guan Z, et al. Laser beam propagation process in atmosphere[J]. Laser & Optoelectronics Progress, 2017, 54(4): 041404.

[6] 闫伟, 陈志华, 杜太焦, 等. 基于变形镜本征模式法校正大气热晕的数值模拟[J]. 光学学报, 2014, 34(11): 1101001.

    Wei Y, Chen Z H, Du T J, et al. Numerical simulation of correction thermal blooming based on deformable mirror eigen mode[J]. Acta Optica Sinica, 2014, 34(11): 1101001.

[7] 盛裴轩, 毛杰泰, 李建国, 等. 大气物理学[M]. 北京: 北京大学出版社, 2003.

[8] Landis GA. Solar power for the lunar night[C]. 9 th Biennial SSI/Princeton Conference on Space Manufacturing , 1989: 10- 13.

[9] Landis G A. Space power by ground-based laser illumination[J]. IEEE Aerospace & Electronic Systems Magazine, 1991, 6(11): 3-7.

[10] Olsen LC, DunhamG, Huber DA, et al. GaAs solar cells for laser power beaming[C]. Space Photovoltaic Research and Technology Conference, 1991.

[11] MidorikawaK. Intense laser beams[M]. E.E . Montgomery, 1992: 352

[12] Bennett H E. Rather J D G, Iü E E M. Free-electron laser power beaming to satellites at China Lake, California[J]. Nuclear Instruments & Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 341(1/2/3): 124-131.

[13] Tyson RK. Principles of adaptive optics[M]. London: Academic Press, 1991: 100.

[14] Motohiro T, Takeda Y, Ito H, et al. 56(8S2): 08MA07[J]. its application to laser beam power feeding to electric vehicles. Japanese Journal of Applied Physics, 2017.

[15] YugamiH, KanamoriY, ArashiH, et al. Field experiment of laser energy transmission and laser to electric conversion[C]. Energy Conversion Engineering Conference, 1997: 5912538.

[16] SteinsiekF. Wireless power transmission experiment as an early contribution to planetary exploration missions[C]. 54 th International Astronautical Congress , 2003: 169- 176.

[17] BlackwellT. Recent demonstrations of laser power beaming at DFRC and MSFC[C]. AIP Conference Proceedings, 2005: 73- 85.

[18] Kawashima N, Takeda K, Yabe K. Application of the laser energy transmission technology to drive a small airplane[J]. Chinese Optics Letters, 2007, 5(s1): S109-S110.

[19] Takeda K, Kawashima N, Yabe K. Laser energy transmission to a small-unmanned aerial vehicle[J]. Transactions of the Japan Society for Aeronautical & Space Sciences Space Technology Japan, 2008, 7: 27-32.

[20] Becker DE, ChiangR, Keys CC, et al. Photovoltaic-concentrator based power beaming for space elevator application[C]// AIP Conference Proceedings, 2010: 271- 281.

[21] SmithM, TillotsonB, OliverJ, et al. Development of a laser power beaming experiment[C]. Photovoltaic Specialists Conference, 2012: 13055706.

[22] Brandhorst HW, Forester DR. Effects of the atmosphere on laser transmission to GaAs solar cells[C]. 54 th International Astronautical Congress, paper# IAC-03-R-3.08, Bremen, Germany, September , 2003.

[23] Lockheed Martin Aeronautics Company. Lockheed Martin Performs First Ever Outdoor Flight Test Of Laser Powered UAS[DB/OL].[2012-08-07]. https://www.edn.com/electronics-products/electronic-product-releases/opto-electronics-products/4391875/Lockheed-Martin-Performs-First-Ever-Outdoor-Flight-Test-Of-Laser-Powered-UAS.

[24] 侯欣宾, 王立. 未来能源之路--太空发电站[J]. 国际太空, 2014, 5: 70-79.

[25] Young C G. A sun-pumped cw one-watt laser[J]. Applied Optics, 1966, 5(6): 993-997.

[26] Yabe T, Ohkubo T, Uchida S, et al. High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium[J]. Applied Physics Letters, 2007, 90(26): 261120.

[27] LillingtonD, CotalH, ErmerJ, et al. 32.3% efficient triple junction GaInP/GaAs/Ge concentrator solar cells[C]. Energy Conversion Engineering Conference and Exhibit, 2000: 6776827.

[28] Guoan CM. Ground-based high energy power beaming in support of spacecraft power requirements[D]. Monterey: Naval Postgraduate School, 2006.

[29] Vandyke JE. Modeling laser effects on multi-junction solar cells using silvaco ATLAS software for spacecraft power beaming applications[D]. Monterey: Naval Postgraduate School, 2010.

[30] Cuce E, Cuce P M, Bali T. An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters[J]. Applied Energy, 2013, 111: 374-382.

[31] Wilcox JR. Solar cell temperature dependent efficiency and very high temperature efficiency limits[D]. West Lafayette: Purdue University, 2013.

[32] de Young RJ, Lee JH, Williams MD, et al. Comparison of electrically driven lasers for space power transmission[C]. Scientific and Technical Information Division, 1988: 88.

[33] KudryashovA, SamarkinV, AlexandrovA, et al. Adaptive optics for high-power laser beam control[C]. Adaptive Optics for Industry and Medicine, 2005, 102: 237- 248.

[34] Lefebvre MJ, Taylor GL, Cuellar EL, et al. Adaptive optics system for laser-power beam forming[C]. SPIE, 1995, 2376: 200- 209.

[35] D'Amato F X. Berak J M, Shuskus A J. Fabrication and test of an efficient photovoltaic cell for laser optical power transmission[J]. IEEE Photonics Technology Letters, 1992, 4(3): 258-260.

[36] MiyakawaH, HyodoR, TanakaY, et al. Photovoltaic cell characteristics for high-intensity laser light in fiber optic power transmission systems[C]. Photovoltaic Specialists Conference, 2002: 7755396.

[37] Ratcliffe EL, PageI, Chami A. Energy management system: US5682949A[P]. ( 1997-11-04)[2018-01-23]. https://www.google.com/patents/US5682949.

[38] Shan T Q, Qi X L. Design and optimization of GaAs photovoltaic converter for laser power beaming[J]. Infrared Physics & Technology, 2015, 71: 144-150.

[39] Krupke W F, Beach R J, Payne S A, et al. DPAL: A new class of lasers for cw power beaming at ideal photovoltaic cell wavelengths[J], 2004, 702(1): 367-377.

[40] Howell JT, O'Neill M J, Fork R L. Advanced receiver/converter experiments for laser wireless power transmission[C]. Solar Power from Space (SPS04) and 5 th Wireless Power Transmission (WPT5) Conference , 2004: 187- 194.

[41] 何滔, 杨苏辉, 张海洋, 等. 高效激光无线能量传输及转换实验[J]. 中国激光, 2013, 40(3): 0317001.

    He T, Yang S H, Zhang H Y, et al. Experiment of space laser energy transmission and conversion with high efficiency[J]. Chinese Journal of Lasers, 2013, 40(3): 0317001.

[42] 乔良, 杨雁南. 激光无线能量传输效率的实验研究[J]. 激光技术, 2014, 38(5): 590-594.

    Qiao L, Yang Y N. Experimental research of laser wireless power transmission efficiency[J]. Laser Technology, 2014, 38(5): 590-594.

[43] ZhangY, Chen MS, Jiang HM, et al. Research of 915 nm laser power beaming to monocrystal silicon solar cells[C]. SPIE, 2015, 9621: 96210I.

[44] Yang YW, Zhang DL, Li XJ. Research on the mathematical and simulated models of photovoltaic cells for laser power beaming in space[C]. SPIE, 2015, 9449: 944912.

[45] 陈建东, 黄仕华. 任意辐照强度和温度下的光伏组件输出特性模拟仿真[J]. 激光与光电子学进展, 2016, 53(2): 022303.

    Chen J D, Huang S H. Simulation of photovoltaic module characteristics in arbitrary solar radiation and temperature[J]. Laser & Optoelectronics Progress, 2016, 53(2): 022303.

[46] Mellit A, Benghanem M, Kalogirou S A. Modeling and simulation of a stand-alone photovoltaic system using an adaptive artificial neural network: Proposition for a new sizing procedure[J]. Renewable Energy, 2007, 32(2): 285-313.

[47] Ma T, Yang H X, Lu L. Development of a model to simulate the performance characteristics of crystalline silicon photovoltaic modules/strings/arrays[J]. Solar Energy, 2014, 100: 31-41.

[48] Brano V L, Orioli A, Ciulla G, et al. An improved five-parameter model for photovoltaic modules[J]. Solar Energy Materials and Solar Cells, 2010, 94(8): 1358-1370.

[49] 刘晓光, 华文深, 刘恂, 等. 激光无线能量传输系统光伏接收器电路效率优化研究[J]. 激光杂志, 2015, 36(12): 100-103.

    Liu X G, Hua W S, Liu X, et al. Design of photovoltaic receiver with high circuitry efficiency for laser wireless power transmission system[J]. Laser Journal, 2015, 36(12): 100-103.

[50] 刘晓光, 华文深, 刘恂, 等. 激光供能无人机光伏接收器效率优化方法[J]. 红外与激光工程, 2016, 45(3): 0306002.

    Liu X G, Hua W S, Liu X, et al. Methods to improve efficiency of photovoltaic receiver for laser powered unmanned aerial vehicle[J]. Infrared and Laser Engineering, 2016, 45(3): 0306002.

[51] 华文深, 刘晓光, 张大铭. 激光辐照单结砷化镓光伏电池的输出特性[J]. 激光与红外, 2016, 46(12): 1463-1466.

    Hua W S, Liu X G, Zhang D M. Output characteristics of single-junction GaAs photovoltaic cell irradiated by laser[J]. Laser & Infrared, 2016, 46(12): 1463-1466.

李巍, 吴凌远, 王伟平. 激光无线能量传输研究进展[J]. 激光与光电子学进展, 2018, 55(2): 020008. Wei Li, Lingyuan Wu, Weiping Wang. Research Progress of Laser Wireless Power Transmission[J]. Laser & Optoelectronics Progress, 2018, 55(2): 020008.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!