光学学报, 2018, 38 (10): 1030001, 网络出版: 2019-05-09   

基于竞争适应重加权采样算法耦合机器学习的土壤含水量估算 下载: 965次

Estimation of Soil Moisture Content Based on Competitive Adaptive Reweighted Sampling Algorithm Coupled with Machine Learning
葛翔宇 1,2,3,*丁建丽 1,2,3,*王敬哲 1,2,3王飞 1,2,3蔡亮红 1,2,3孙慧兰 4
作者单位
1 新疆大学资源与环境科学学院, 新疆 乌鲁木齐 830046
2 新疆大学绿洲生态教育部重点实验室, 新疆 乌鲁木齐 830046
3 新疆大学智慧城市与环境建模自治区普通高校重点实验室, 新疆 乌鲁木齐 830046
4 新疆师范大学地理科学与旅游学院, 新疆 乌鲁木齐 830054
引用该论文

葛翔宇, 丁建丽, 王敬哲, 王飞, 蔡亮红, 孙慧兰. 基于竞争适应重加权采样算法耦合机器学习的土壤含水量估算[J]. 光学学报, 2018, 38(10): 1030001.

Xiangyu Ge, Jianli Ding, Jingzhe Wang, Fei Wang, Lianghong Cai, Huilan Sun. Estimation of Soil Moisture Content Based on Competitive Adaptive Reweighted Sampling Algorithm Coupled with Machine Learning[J]. Acta Optica Sinica, 2018, 38(10): 1030001.

参考文献

[1] Kumar S V, Dirmeyer P A. Peters-Lidard C D, et al. Information theoretic evaluation of satellite soil moisture retrievals[J]. Remote Sensing of Environment, 2018, 204: 392-400.

[2] 蔡亮红, 丁建丽. 基于高光谱多尺度分解的土壤含水量反演[J]. 激光与光电子学进展, 2018, 55(1): 013001.

    Cai L H, Ding J L. Inversion of soil moisture content based on hyperspectral multi-scale decomposition[J]. Laser & Optoelectronics Progress, 2018, 55(1): 013001.

[3] 于雷, 朱亚星, 洪永胜, 等. 高光谱技术结合CARS算法预测土壤水分含量[J]. 农业工程学报, 2016, 32(22): 138-145.

    Yu L, Zhu Y X, Hong Y S, et al. Determination of soil moisture content by hyperspectral technology with CARS algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(22): 138-145.

[4] Xu C, Zeng W Z, Huang J S, et al. Prediction of soil moisture content and soil salt concentration from hyperspectral laboratory and field data[J]. Remote Sensing, 2016, 8(1): 42.

[5] Oltra-Carrió R, Baup F, Fabre S, et al. Improvement of soil moisture retrieval from hyperspectral VNIR-SWIR data using clay content information: from laboratory to field experiments[J]. Remote Sensing, 2015, 7(3): 3184-3205.

[6] 朱亚星, 于雷, 洪永胜, 等. 土壤有机质高光谱特征与波长变量优选方法[J]. 中国农业科学, 2017, 50(22): 4325-4337.

    Zhu Y X, Yu L, Hong Y S, et al. Hyperspectral features and wavelength variables selection methods of soil organic matter[J]. Scientia Agricultura Sinica, 2017, 50(22): 4325-4337.

[7] Kawamura K, Tsujimoto Y, Rabenarivo M, et al. Vis-NIR spectroscopy and PLS regression with waveband selection for estimating the total C and N of paddy soils in Madagascar[J]. Remote Sensing, 2017, 9(10): 1081.

[8] 张贤龙, 张飞, 张海威, 等. 基于光谱变换的高光谱指数土壤盐分反演模型优选[J]. 农业工程学报, 2018, 34(1): 110-117.

    Zhang X L, Zhang F, Zhang H W, et al. Optimization of soil salt inversion model based on spectral transformation from hyperspectral index[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(1): 110-117.

[9] 刁万英, 刘刚, 胡克林. 基于高光谱特征与人工神经网络模型对土壤含水量估算[J]. 光谱学与光谱分析, 2017, 37(3): 841-846.

    Diao W Y, Liu G, Hu K L. Estimation of soil water content based on hyperspectral features and the ANN model[J]. Spectroscopy and Spectral Analysis, 2017, 37(3): 841-846.

[10] Belgiu M, Drguţ L. Random forest in remote sensing: a review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114: 24-31.

[11] Khosravi V, Ardejani F D, Yousefi S, et al. Monitoring soil lead and zinc contents via combination of spectroscopy with extreme learning machine and other data mining methods[J]. Geoderma, 2018, 318: 29-41.

[12] Nawar S, Mouazen A M. Comparison between random forests, artificial neural networks and gradient boosted machines methods of on-line vis-NIR spectroscopy measurements of soil total nitrogen and total carbon[J]. Sensors, 2017, 17(10): 2428.

[13] Liang L, Di L P, Zhang L P, et al. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method[J]. Remote Sensing of Environment, 2015, 165: 123-134.

[14] 何宝忠, 丁建丽, 王飞, 等. 基于物候特征的盐渍化信息数据挖掘研究[J]. 生态学报, 2017, 37(9): 3133-3148.

    He B Z, Ding J L, Wang F, et al. Research on data mining of salinization information based on phenological characters[J]. Acta Ecologica Sinica, 2017, 37(9): 3133-3148.

[15] VohlandM, LudwigM, Thiele-BruhnS, et al. Determination of soil properties with visible to near- and mid-infrared spectroscopy: effects of spectral variable selection[J]. Geoderma, 2014, 223/224/225: 88- 96.

[16] Tan K, Wang H M, Zhang Q Q, et al. An improved estimation model for soil heavy metal(loid) concentration retrieval in mining areas using reflectance spectroscopy[J]. Journal of Soils and Sediments, 2018, 18: 2008-2022.

[17] Tang G, Huang Y, Tian K D, et al. A new spectral variable selection pattern using competitive adaptive reweighted sampling combined with successive projections algorithm[J]. Analyst, 2014, 139(19): 4894-4902.

[18] Wijewardane N K, Ge Y F. Morgan C L S. Moisture insensitive prediction of soil properties from VNIR reflectance spectra based on external parameter orthogonalization[J]. Geoderma, 2016, 267: 92-101.

[19] 刘亚秋, 陈红艳, 王瑞燕, 等. 基于可见/近红外光谱的黄河口区土壤盐分及其主要离子的定量分析[J]. 中国农业科学, 2016, 49(10): 1925-1935.

    Liu Y Q, Chen H Y, Wang R Y, et al. Quantitative analysis of soil salt and its main ions based on visible/near infrared spectroscopy in estuary area of Yellow River[J]. Scientia Agricultura Sinica, 2016, 49(10): 1925-1935.

[20] Huang G, Huang G B, Song S J, et al. Trends in extreme learning machines: a review[J]. Neural Networks, 2015, 61: 32-48.

[21] 程术希, 孔汶汶, 张初, 等. 高光谱与机器学习相结合的大白菜种子品种鉴别研究[J]. 光谱学与光谱分析, 2014, 34(9): 2519-2522.

    Cheng S X, Kong W W, Zhang C, et al. Variety recognition of Chinese cabbage seeds by hyperspectral imaging combined with machine learning[J]. Spectroscopy and Spectral Analysis, 2014, 34(9): 2519-2522.

[22] Wang J Z, Ding J L, Abulimiti A, et al. Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS-NIR) spectroscopy, Ebinur Lake Wetland, Northwest China[J]. PeerJ, 2018, 6: e4703.

[23] Yu X, Liu Q, Wang Y B, et al. Evaluation of MLSR and PLSR for estimating soil element contents using visible/near-infrared spectroscopy in apple orchards on the Jiaodong Peninsula[J]. Catena, 2016, 137: 340-349.

[24] 李哲, 张飞, 冯海宽, 等. 基于波段组合的植被叶片盐离子估算研究[J]. 光学学报, 2017, 37(11): 1128002.

    Li Z, Zhang F, Feng H K, et al. Research on the estimation of salt ions of vegetation leaves based on band combination[J]. Acta Optica Sinica, 2017, 37(11): 1128002.

葛翔宇, 丁建丽, 王敬哲, 王飞, 蔡亮红, 孙慧兰. 基于竞争适应重加权采样算法耦合机器学习的土壤含水量估算[J]. 光学学报, 2018, 38(10): 1030001. Xiangyu Ge, Jianli Ding, Jingzhe Wang, Fei Wang, Lianghong Cai, Huilan Sun. Estimation of Soil Moisture Content Based on Competitive Adaptive Reweighted Sampling Algorithm Coupled with Machine Learning[J]. Acta Optica Sinica, 2018, 38(10): 1030001.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!