Photonics Research, 2017, 5 (6): 06000583, Published Online: Dec. 7, 2017   

Watt-level broadly wavelength tunable mode-locked solid-state laser in the 2 μm water absorption region Download: 551次

Author Affiliations
1 Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
2 Jiangsu Collaborative Innovation Center of Advanced Laser Technology and Emerging Industry, Jiangsu Normal University, Xuzhou 221116, China
3 e-mail: weizhou@jsnu.edu.cn
4 Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China
Copy Citation Text

Wei Zhou, Xiaodong Xu, Rui Xu, Xuliang Fan, Yongguang Zhao, Lei Li, Dingyuan Tang, Deyuan Shen. Watt-level broadly wavelength tunable mode-locked solid-state laser in the 2 μm water absorption region[J]. Photonics Research, 2017, 5(6): 06000583.

References

[1] K. Sugioka, Y. Cheng. Ultrafast lasers—reliable tools for advanced materials processing. Light Sci. Appl., 2014, 3: e149.

[2] Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, D. J. Richardson. Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800–2050  nm window. Opt. Express, 2013, 21: 26450-26455.

[3] E. De Tommasi, G. Casa, L. Gianfrani. High precision determinations of NH3 concentration by means of diode laser spectrometry at 2.005  μm. Appl. Phys. B, 2006, 85: 257-263.

[4] W. Q. Yang, B. Zhang, G. H. Xue, K. Yin, J. Hou. Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2  μm MOPA system. Opt. Lett., 2014, 39: 1849-1852.

[5] A. A. Lagatsky, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. A. Brown, M. D. Dawson, W. Sibbett. Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2  μm. Opt. Express, 2011, 19: 9995-10000.

[6] A. A. Lagatsky, O. L. Antipov, W. Sibbett. Broadly tunable femtosecond Tm: Lu2O3 ceramic laser operating around 2070  nm. Opt. Express, 2012, 20: 19349-19354.

[7] T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, J. Xu. 1.21  W passively mode-locked Tm:LuAG laser. Opt. Express, 2015, 23: 11815-11825.

[8] A. A. Lagatsky, F. Fusari, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. A. Brown, M. D. Dawson, W. Sibbett. Passive mode locking of a Tm, Ho:KY(WO4)2 laser around 2  μm. Opt. Lett., 2009, 34: 2587-2589.

[9] Y. C. Wang, R. J. Lan, X. Mateso, J. Li, C. Hu, C. Y. Li, S. Suomalainen, A. HÄrkÖnen, M. Guina, V. Petrov, W. Gribner. Broadly tunable mode-locked Ho:YAG ceramic laser around 2.1  μm. Opt. Express, 2016, 24: 18003-18012.

[10] C. Luan, K. Yand, J. Zhao, S. Zhao, T. Li, H. Zhang, J. He, L. Song, T. Dekorsy, M. Guina, L. Zheng. Diode-pumped mode-locked Tm:LuAG laser at 2  μm based on GaSb-SESAM. Opt. Lett., 2017, 42: 839-842.

[11] A. Godard. Infrared (2-12  μm) solid-state laser sources: a review. C. R. Physique, 2007, 8: 1100-1128.

[12] B. M. Walsh. Review of Tm and Ho materials: spectroscopy and lasers. Laser Phys., 2009, 19: 855-866.

[13] F. M. P. Leclère, M. Schoofs, F. Auger, B. B. Ing, S. R. Mordon. Blood flow assessment with magnetic resonance imaging after 1.9  μm diode laser-assisted microvascular anastomosis. Lasers Surg. Med., 2010, 42: 299-305.

[14] M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, S. Juodkazis. Ultrafast laser processing of materials: from science to industry. Light Sci. Appl., 2016, 5: e16133.

[15] X. Y. Chen, Q. Gao, X. L. Wang, X. D. Li. Experimental design and parameter optimization for laser three-dimensional (3-D) printing. Laser Eng., 2016, 33: 189-196.

[16] M. C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, H. C. Kapteyn. Bright, coherent, ultrafast soft x-ray harmonics spanning the water window from a tabletop light source. Phys. Rev. Lett., 2010, 105: 173901.

[17] F. Wu, W. C. Yao, H. T. Xia, Q. Y. Liu, M. M. Ding, Y. G. Zhao, W. Zhou, X. D. Xu, D. Y. Shen. Highly efficient continuous-wave and Q-switched Tm:CaGdAlO4 laser at 2  μm. Opt. Mater. Express, 2017, 7: 1290-1294.

[18] W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz. Passive mode-locking of a Tm-doped bulk laser near 2  μm using a carbon nanotube saturable absorber. Opt. Express, 2009, 17: 11007-11012.

[19] N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, P. Laporta. Passive mode-locking of a diode-pumped Tm:GdLiF4 laser. Appl. Phys. B, 2010, 101: 75-78.

[20] S. F. Gao, Z. Y. You, J. L. Xu, Y. J. Sun, C. Y. Tu. Continuous wave laser operation of Tm and Ho co-doped CaYAlO4 and CaGdAlO4 crystals. Mater. Lett., 2015, 141: 59-62.

[21] L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, L. J. Qian. Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser. Opt. Lett., 2015, 40: 356-358.

[22] J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, R. Moncorgé. Passively Q-switched Tm:CaYAlO4 laser using a MoS2 saturable absorber. IEEE Photon. Technol. Lett., 2017, 29: 515-518.

[23] W. Zhou, X. L. Fan, H. Xue, R. Xu, Y. G. Zhao, X. D. Xu, D. Y. Tang, D. Y. Shen. Stable passively harmonic mode-locking dissipative pulses in 2  μm solid-state laser. Opt. Express, 2017, 25: 1815-1823.

[24] .

[25] N. Coluccelli, G. Galzerano, F. Cornacchia, A. Di Lieto, M. Tonelli, P. Laporta. High-efficiency diode-pumped Tm: GdLiF4 laser at 1.9  μm. Opt. Lett., 2009, 34: 3559-3561.

[26] R. C. Stoneman, L. Esterowitz. Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers. Opt. Lett., 1990, 15: 486-488.

[27] L. A. Zenteno, H. Po, N. M. Cho. All-solid-state passively Q-switched mode-locked Nd-doped fiber laser. Opt. Lett., 1990, 15: 115-117.

[28] D. von der Linde. Characterization of the noise in continuously operating mode-locked lasers. Appl. Phys. B, 1986, 39: 201-217.

[29] LiaoY. B., Polarization Optics (Science Publishing, 2003).

Wei Zhou, Xiaodong Xu, Rui Xu, Xuliang Fan, Yongguang Zhao, Lei Li, Dingyuan Tang, Deyuan Shen. Watt-level broadly wavelength tunable mode-locked solid-state laser in the 2 μm water absorption region[J]. Photonics Research, 2017, 5(6): 06000583.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!